• Title/Summary/Keyword: amino acids homology

Search Result 213, Processing Time 0.026 seconds

Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae (폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포)

  • 권혁영;박연진;표석능;이동권
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In bacteria, ethanol shock induced the major chaperone GroEL and DnaK, but in Streptococcus pneumoniae, it induced neither GroEL nor DnaK but alcohol dehydrogenase (ADH). In this study, ADH gene encoding a 104-kDa (p104) protein was identified and characterized. The deduced amino acid sequence of pneumococcal ADH shows homology with other members of the ADH family, and particularly with Entamoeba histolytica ADH2 and E. coli ADH. S. pneumoniae adh is composed of 883 amino acids and its estimated isoelectric point is 6.09. Although ADH is conserved between S. pneumoniae and E. coli, immunoblot analysis employing antisera raised against pneumococcus ADH demonstrated no cross-reactivity with ADH analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Also secretion of ADH was demonstrated by subcellular fractionation and immunoblot analysis of proteins. These results suggest that S. pneumoniae ADH could be a highly feasible candidate for both diagnostic marker and vaccine.

  • PDF

Amino Acid Alterations in the $\beta$- Tubulin of Metarhizium anisopliae That Confer Benomyl Resistance

  • Kim Soon Kee;Shim Hee Jin;Roh Jong Yul;Li Ming Shun;Choi Jae Young;Jin Byung Rae;Boo Kyung Saeng;Je Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • We cloned the $\beta$-tubulin genes from the wild type strain and two benomyl-resistant mutants of Metahizium anisopliae and determined their nucleotide sequences. A $\beta$-tubulin encoding 448-residue protein from wild type M. anisopliae shows strong homology to other $\beta$-tubulins. The coding region is interrupted by four introns. Comparisons of intron position between the M. anisopliae gene and other fungal $\beta$-tubulin genes show considerable positional conservation. The mutations responsible for benomyl resistance were determined in two spontaneous mutants, 8-18 and 8­19. One mutant 8-18 substituted glutamate for aspar­agine at position 33 and lysine for glutamine at position 134. The other mutant 8-19 showed alterations at three positions of $\beta$-tubulin arginine for tryptophan at position 21, lysine for asparagine at position 33, and phenylalanine for leucine at position 240. These data suggest that regions of $\beta$-tubulin containing amino acids 21, 33,134, and 240 interact to form the binding site of benomyl.

Phospholipase D in Guinea Pig Lung Tissue Membrane is Regulated by Cytosolic ARF Proteins

  • Chung, Yean-Jun;Jeong, Jin-Rak;Lee, Byung-Chul;Kim, Ji-Young;Park, Young-In;Ro, Jai-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.897-905
    • /
    • 2003
  • Phospholipase D (PLD) and ADP-ribosylation factor (ARF) were partially purified on a series of column chromatography, and their biochemical properties were characterized to understand the regulatory mechanism of PLD activation by ARF protein in the antigen-induced immune responses in guinea pigs. Heparin Sepharose and high-Q Sepharose column chromatographies were used for the purification of PLD, and Sephadex G-25, DEAE Sephacel, Source 15 PHE (HIC), Superdex-75, and Uno-Q column chromatographies were used for the purification of ARF. The purified PLD and ARF proteins were identified with anti-rabbit PLD- or ARF-specific antibodies, showing about 64 or 85 kDa for the molecular mass of PLD and 29 or 35 kDa for the sizes of ARF. Partial cDNA of ARF3 was cloned by RT-PCR in guinea pig lung tissue and its nucleotides and amino acids were sequenced. Guinea pig ARF3 showed 92% of nucleotides sequence identity and 100% of amino acid sequence homology with human ARF3. The ARF-regulated PLD activity was measured in the oleate or ARFs-containing mixed lipid vesicles. The purified and recombinant ARF (rARF) activities were assessed with the $GTP{\gamma}S$ binding assay. The PLD activity was induced by oleate in a dose-dependent manner. The purified ARF and recombinant ARF3 increased PLD activity in guinea pig lung tissues. These data show that the activity of membrane-bound PLD can be regulated by the cytosolic ARF proteins, suggesting that ARF proteins in guinea pig lung can act as a regulatory factor in controlling the PLD activity in allergic reaction.

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee;Chung, Eun-Sook;Lee, Hye-Young;Pak, Jung-Hun;Kim, Hye-Jeong;Lee, Jai-Heon;Moon, Byung-Ju;Jeung, Ji-Ung;Shin, Sang-Hyun;Chung, Young-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.

Molecular cloning, expression and characterization of a squalene synthase gene from grain amaranth (Amaranthus cruentus L.)

  • Park, Young-Jun;Nemoto, Kazuhiro;Matsushima, Kenichi;Um, Han-Yong;Choi, Jung-Hoon;Oh, Chan-sung;Nishikawa, Tomotaro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.89-89
    • /
    • 2017
  • A gene encoding squalene synthase from grain amaranth was cloned and characterized. The full-length cDNA was 1805-bp long and contained a 1248-bp open reading frame encoding a protein of 416 amino acids with a molecular mass of 47.6 kDa. Southern blot analysis revealed that the A. cruentus genome contained a single copy of the gene. Comparison of the cDNA and genomic sequences indicated that the amaranth SQS gene had 12 introns and 13 exons. All of the exons contributed to the coding sequence. The predicted amino acid sequence of the SQS cDNA shared high homology with those of SQSs from several other plants. It contained conserved six domains that are believed to represent crucial regions of the active site. We conducted qRT-PCR analyses to examine the expression pattern of the SQS gene in seeds at different developmental stages and in several tissues. The amaranth SQS gene was low levels of SQS transcripts at the initial stage of seed development, but the levels increased rapidly at the mid-late developmental stages before declining at the late developmental stage. These findings showed that the amaranth SQS is a late-expressed gene that is rapidly expressed at the mid-late stage of seed development. In addition, we observed that the SQS mRNA levels in stems and roots increased rapidly during the four- to six-leaf stage of development. Therefore, our results showed that the expression levels of SQS in stem and root tissues are significantly higher than those in leaf tissues. In present study provides useful information about the molecular characterization of the SQS clone isolated from grain amaranth. Finally, a basic understanding of these characteristics will contribute to further studies on the amaranth SQS.

  • PDF

Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus)

  • Zheng, X.;Hao, X.Y.;Chen, Y.H.;Zhang, X.;Yang, J.F.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.758-763
    • /
    • 2012
  • As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

Alteration of voltage-dependent activation by a single point mutation of a putative nucleotide-binding site in large-conductance $Ca^{2+}$-activated $K^+$ channel

  • Kim, Hyun-Ju;Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.44-44
    • /
    • 2003
  • $BK_{Ca}$ channels were suggested to contain one or more domains of the ‘regulator of K+ conductance’(RCK) in their cytosolic carboxyl termini (Jiang et al.2001). It was also shown that the RCK domain in mammalian $BK_{Ca}$ channels might sense the intracellular $Ca^{2+}$ with a low affinity (Xia et al. 2002). We aligned the amino acid sequence of the $\alpha$-subunit of rat $BK_{Ca}$ channels (rSlo) with known RCK domains and identified a second region exhibiting about 50% homology. This putative domain, RCK2, contains the characteristic amino acids conserved in other RCK domains. We wondered whether this second domain is involved in the domain-domain interaction and the gating response to intracellular $Ca^{2+}$ for rSlo channel, as revealed in the structure of RCK domain of E. coli channel (Jiang et al.2001). In order to examine the possibility, site-directed mutations were introduced into the RCK2 domain of rSlo channel and the mutant channels were expressed in Xenopus oocytes for functional studies. One of such mutation, G772D, in the putative nucleotide-binding domain resulted in the enhanced $Ca^{2+}$ sensitivity and the channel gating of rSlo channel. These results suggest that this region of $BK_{Ca}$ channels is important for the channel gating and may form an independent domain in the cytosolic region of $BK_{Ca}$ channels. In order to obtain the mechanistic insights of these results, G772 residue was randomly mutagenized by site-directed mutagenesis and total 17 different mutant channels were constructed. We are currently investigating these mutant channels by electrophysiological techniques.ical techniques.

  • PDF

Characterization of Paraplantaricin C7, a Novel Bacteriocin Produced by Lactobacillus paraplantarum C7 Isolated from Kimchi

  • Lee, Kwang-Hee;Park, Jae-Yong;Jeong, Seon-Ju;Kwon, Gun-Hee;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.287-296
    • /
    • 2007
  • A Lactobacillus paraplantarum strain producing a bacteriocin was isolated from kimchi using the spot-on-the lawn method and named L. paraplantarum C7 [15]. The bacteriocin, paraplantaricin C7, was found to inhibit certain Lactobacillus strains, including L. plantarum, L. pentosus, and L. delbrueckii subsp. lactis. It also inhibited Enterococcus faecalis, yet did not inhibit most of the other LAB (lactic acid bacteria) tested. The maximum level of paraplantaricin C7 activity was observed under the culture conditions of $25^{\circ}C$ and a constant pH of 4.5. Paraplantaricin C7 retained 90% of its activity after 10 min of treatment at $100^{\circ}C$ and remained stable within a pH range of 2-8. Based on a culture supernatant, paraplantaricin C7 was purified by DEAE-Sephacel column chromatography and $C_{18}$ reverse-phase HPLC. SDS-PAGE and activity staining were then conducted using the purified paraplantaricin C7, and its molecular mass determined to be about 3,800 Da. The 28 N-terminal amino acids from the purified paraplantaricin C7 were determined, and the structural gene encoding paraplantaricin C7, ppnC7, was cloned by PCR using degenerate primers based on the N-terminal amino acid sequence. The nucleotide sequences for ppnC7 and other neighboring orfs exhibited a limited homology to the previously reported plantaricin operon genes. Paraplantaricin C7 is a novel type II bacteriocin containing a double glycine leader sequence.

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).