• Title/Summary/Keyword: amino acid substitution

Search Result 170, Processing Time 0.025 seconds

Substitution of Glycine 275 by Glutamate (G275E) in Lipase of Bacillus stearothermophilus Affects Its Catalytic Activity and Enantio- and Chain Length Specificity

  • Kim, Myung-Hee;Kim, Hyung-Kwoun;Oh, Byung-Chul;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.764-769
    • /
    • 2000
  • The lipase gene(lip) from Bacillus stearothermophilus was recombined in vitro by utilizing the DNA shuffling technique. After four rounds of shuffling, transformation, and screening based on the initial rate of clear zone formation on a tricaprylin plate, a clone (M10) was isolated, the cell extract of which showed about 2.8-fold increased lipase activity. The DNA sequence of the mutant lipase gene (m10) showed 3 base changes, resulting in two cryptic mutations and one amino acid substitution: S113($AGC{\rightarrow}AGT$), L252 ($TTG{\rightarrow}TTA$), and G275E ($GGA{\rightarrow}GAA$). SDS-PAGE analysis revealed that the increased enzyme activity observed in M10 was partly caused by high expression of the m10 lipase gene. The amount of the expressed G275E lipase was estimated to comprise as much as 41% of the total soluble proteins of the cell. The maximum velocity ($V_{max}$) of the purified mutant enzyme for the hydrolysis of olive oil was measured to be 3,200 U/mg, which was 10% higher than that of the parental (WT) lipase (2,900 U/mg). Its optimum temperature for the hydrolysis of olive oil was $68^{\circ}C$ and it showed a typical $Ca^{2+}$-dependent thermostability, properties fo which were the same as those of the WT lipase. However, the mutant enzyme exhibited a high enantiospecificity towards (S)-naproxen compared with the WT lipase. In addition, it showed increased hydrolytic activity towards triolein, tricaprin, tricaprylin, and tricaproin.

  • PDF

A Comparison between Low- and High-Passage Strains of Human CytomegalovirusS

  • Wang, Wen-Dan;Lee, Gyu-Cheol;Kim, Yu Young;Lee, Chan Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1800-1807
    • /
    • 2016
  • To understand how human cytomegalovirus (HCMV) might change and evolve after reactivation, it is very important to understand how the nucleotide sequence of cultured HCMV changes after in vitro passaging in cell culture, and how these changes affect the genome of HCMV and the consequent variation in amino acid sequence. Strain JHC of HCMV was propagated in vitro for more than 40 passages and its biological and genetic changes were monitored. For each passage, real-time PCR was performed in order to determine the genome copy number, and a plaque assay was employed to get virus infection titers. The infectious virus titers gradually increased with passaging in cell culture, whereas the number of virus genome copies remained relatively unchanged. A linear correlation was observed between the passage number and the log10 infectious virus titer per virus genome copy number. To understand the genetic basis underlying the increase in HCMV infectivity with increasing passage, the whole-genome DNA sequence of the high-passage strain was determined and compared with the genome sequence of the low-passage strain. Out of 100 mutations found in the high-passage strain, only two were located in an open reading frame. A G-T substitution in the RL13 gene resulted in a nonsense mutation and caused an early stop. A G-A substitution in the UL122 gene generated an S-F nonsynonymous mutation. The mutations in the RL13 and UL122 genes might be related to the increase in virus infectivity, although the role of the mutations found in noncoding regions could not be excluded.

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Polymorphisms of SLC22A9 (hOAT7) in Korean Females with Osteoporosis

  • Ahn, Seong Kyu;Suh, Chang Kook;Cha, Seok Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.319-325
    • /
    • 2015
  • Among solute carrier proteins, the organic anion transporters (OATs) play an important role for the elimination or reabsorption of endogenous and exogenous negatively charged anionic compounds. Among OATs, SLC22A9 (hOAT7) transports estrone sulfate with high affinity. The net decrease of estrogen, especially in post-menopausal women induces rapid bone loss. The present study was performed to search the SNP within exon regions of SLC22A9 in Korean females with osteoporosis. Fifty healthy controls and 50 osteoporosis patients were screened for the genetic polymorphism in the coding region of SLC22A9 using GC-clamped PCR and denaturing gradient gel electrophoresis (DGGE). Six SNPs were found on the SLC22A9 gene from Korean women with/without osteoporosis. The SNPs were located as follows: two SNPs in the osteoporosis group (A645G and T1277C), three SNPs in the control group (G1449T, C1467T and C1487T) and one SNP in both the osteoporosis and control groups (G767A). The G767A, T1277C and C1487T SNPs result in an amino acid substitution, from synonymous vs nonsynonymous substitution arginine to glutamine (R256Q), phenylalanine to serine (F426S) and proline to leucine (P496L), respectively. The Km values and Vmax of the wild type, R256Q, P496L and F426S were 8.84, 8.87, 9.83 and $12.74{\mu}M$, and 1.97, 1.96, 2.06 and 1.55 pmol/oocyte/h, respectively. The present study demonstrates that the SLC22A9 variant F426S is causing inter-individual variation that is leading to the differences in transport of the steroid sulfate conjugate (estrone sulfate) and, therefore this could be used as a marker for certain disease including osteoporosis.

Effects of partial substitution of nitrites with purple-fleshed sweet potato powder on physicochemical characteristics of sausages

  • Jin, Sang-Keun;Shin, Teak-Soon;Yim, Dong-Gyun
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.702-712
    • /
    • 2020
  • Synthetic nitrite imparts a reddish-pink color to meat and a distinct flavor to meat products, delays lipid oxidation, and inhibits microbial growth and pathogens. However, excessive intake of nitrite might result in the production of carcinogenic nitrosamine, which might increase the risk of cancer in humans. Therefore, we aimed to find an alternative natural colorant for pork sausages. Pork sausages were mixed with 0.014% sodium nitrite (NaNO2) alone (CON), without either NaNO2 or purple-fleshed sweet potato powder (PP; CON1), 0.5% PP alone (PP1), 1% PP (PP2) alone, 0.011% NaNO2 and 0.5% PP (SP1), and 0.011% NaNO2 and 1% PP (SP2). The sausages were then cooked and stored for physicochemical analysis on days 0, 5, 10, 15, and 20. The a* and W* values were the greatest and lowest in the SP2 and CON1 treatments, respectively (p < 0.05). The concentrations of residual nitrite in the sausages at 20 days decreased in the order of CON > SP1, SP2 > PP2 > PP1, CON1. The fatty acid content was higher, and flavorous amino acids were more in PP2 (p < 0.05). The fatty acid composition was comparable between the SP2 and CON groups, but the contents of glutamic acid and alanine were greater in the SP2 group. In conclusion, SP2 (0.011% NaNO2 with 1% PP) could be added as a natural colorant for pork sausage production, and NaNO2 could be substituted with up to 20% PP without detrimental effects on sausage appearance and/or quality.

Molecular diversity of the VP2 of Carnivore protoparvovirus 1 (CPV-2) of fecal samples from Bogotá

  • Galvis, Cristian Camilo;Jimenez-Villegas, Tatiana;Romero, Diana Patricia Reyes;Velandia, Alejandro;Taniwaki, Sueli;Silva, Sheila Oliveira de Souza;Brandao, Paulo;Santana-Clavijo, Nelson Fernando
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.14.1-14.11
    • /
    • 2022
  • Background: Carnivore protoparvovirus 1, also known as canine parvovirus type 2 (CPV-2), is the main pathogen in hemorrhagic gastroenteritis in dogs, with a high mortality rate. Three subtypes (a, b, c) have been described based on VP2 residue 426, where 2a, 2b, and 2c have asparagine, aspartic acid, and glutamic acid, respectively. Objectives: This study examined the presence of CPV-2 variants in the fecal samples of dogs diagnosed with canine parvovirus in Bogotá. Methods: Fecal samples were collected from 54 puppies and young dogs (< 1 year) that tested positive for the CPV through rapid antigen test detection between 2014-2018. Molecular screening was developed for VP1 because primers 555 for VP2 do not amplify, it was necessary to design a primer set for VP2 amplification of 982 nt. All samples that were amplified were sequenced by Sanger. Phylogenetics and structural analysis was carried out, focusing on residue 426. Results: As a result 47 out of 54 samples tested positive for VP1 screening, and 34/47 samples tested positive for VP2 980 primers as subtype 2a (n = 30) or 2b (n = 4); subtype 2c was not detected. All VP2 sequences had the amino acid, T, at 440, and most Colombian sequences showed an S514A substitution, which in the structural modeling is located in an antigenic region, together with the 426 residue. Conclusions: The 2c variant was not detected, and these findings suggest that Colombian strains of CPV-2 might be under an antigenic drift.

Substitution of Plant and Animal Proteins for Fish Meal in the Growing Korean Rockfish (Sebastes schlegeli) Feeds (조피볼락 육성용 사료의 어분 대체원으로서 식물성 및 동물성 단백질 혼합 첨가 효과)

  • LEE Sang-Min;JEON Im-Gi;LEE Jong-Yun;PARK Sung-Real;KANG Yong-Jin;JEONG Kwan-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.651-662
    • /
    • 1996
  • A 15-week growth trial was conducted in flow-through aquarium system to develop practical feeds for growing Korean rockfish. Two replicate groups of the fish averaging 114 g were fed one of nine diets containing $45\~50\%$ crude protein from various practical ingredients such as fish meal, meat meal, feather meal, blood meal, soybean meal, corn gluten meal, and wheat flour with or without supplemental essential amino acids (EAA) or enzyme mixture. The dietary EAA were adjusted by considering EAA composition of each dietary protein source, A/E ratio (each essential amino $acid\times1000/total$ essential amino arid including Cys and Tyr) calculated using Ah composition of the Korean rockfish whole body and the EAA requirement of other fish. Results indicate that animal and plant protein sources could substitute for fish meal up to $50\%$ in the diets, and the supplementation of amino acids and enzyme mixture have no beneficial effects on fish performance. Fish growth, body composition, nutrient utilization, and cost of fish production are discussed in relation to nutritional values of the protein sources used in diets.

  • PDF

A Study on the Utilization with the Protein Forthification Material of Skip-jack Dark Meat Protein by Enzymatic Hydrolysis (효소 분해에 의한 가다랭이 혈합육 단백질 농축물의 단백질 보강제로서의 이용에 관한 연구)

  • 우강융;배영정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.323-329
    • /
    • 1995
  • For the effective utilization of dark meat separated as by-product from skip-jack canning, the dark meat concentrate(DPC) was prepared by removal of extractable materials with ethanol from dried dark meat. Dark meat protein hydrolysate(DPH) was prepared by the hydrolysis of DPC with ${\alpha}-chymotrypsin$. ${\alpha}-Chymotrypsin$ hydrolysed DPC to the extend of 79% during 10hr. The solubility over a pH range 1~12 showed similar trend on the both of DPH and DPC. The highest solubility was 81% on the DPH and was 36% on the DPC at pH 3. The lowest solubility was 65% on the DPH and was 22% on the DPC at pH 7. The content of total free amino acid was higher in the DPC than in the DPH, but the content of total essential free amino acid was higher in the DPH. Especially, the contents of taurine in the DPC and DPH were much higher than those of other amino acids. The result of sensory evaluation on the fish sauce analogue showed good taste, color and odor at the supplemented level of 8g DPH per 100ml of raw solution of fish sauce analogue and didn't show signifcaint difference compared with market fish sauce(p<0.05). On the preparation of surimi gel, 2% substitution of DPH for the supplemented starch was the most appropriate level.

  • PDF

Characterization of Mutations in AlHK1 Gene from Alternaria longipes: Implication of Limited Function of Two-Component Histidine Kinase on Conferring Dicarboximide Resistance

  • Luo, Yiyong;Yang, Jinkui;Zhu, Mingliang;Yan, Jinping;Mo, Minghe;Zhang, Keqin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive selection with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the selected Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92-amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

Biological Characteristics and Nucleotide Relationships in Korean Tomato spotted wilt virus Isolates

  • Cho, Jeom-Deog;Kim, Jeong-Soo;Kim, Jin-Young;Choi, Gug-Seoun;Chung, Bong-Nam
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.26-37
    • /
    • 2009
  • Tomato spotted wilt virus (TSWV) was identified from seven plants at two areas, Anyang and Dangjin, in Korea. The isolates of TSWV were seven as TSWV-KATm from tomato, TSWV-KAPo from potato, TSWV-KABal from balsam, TSWV-KACTm from cherry tomato and TSWV-KAIxe from Ixeris dentata at Anyang area, and TSWV-KDSe from sesame and TSWV-KDRP from red pepper at Dangjin area. Pathogenicity of seven TSWV isolates was various on the assay plants, and could not be grouped definitely. Three isolates of TSWV-KAIxe, TSWV-KACTm and TSWV-KABal had relatively narrower host ranges among the seven isolates. Percentage of nucleotide substitution in nucleotide sequences encoding nucleocapsid protein (NCP) was 1.2-1.7% among seven TSWV isolates and TSWV-KP. Korean TSWV isolates were divided into three groups by nucleotide homology or amino acid compositions. From the analysis of nucleotide sequences of Korean TSWV isolates compared with those of TSWV reported from other 5 countries including Japan, the Korean seven isolates of TSWV was grouped with German TSWV (D13926). No Korean TSWV isolates were grouped with those from The Netherlands, Brazil and USA.