• Title/Summary/Keyword: amino acid copolymers

Search Result 13, Processing Time 0.032 seconds

Studies on Synthesis of Block Copolymers Containing Polyester and Polypeptide for Drug Delivery System Ⅰ. Synthesis and Characterization of Copolymer of L-Lactic Acid and L-Glutamic Acid (폴리펩티드-의약 전달체 및 폴리펩티드 공중합체의 합성 및 물성에 관한 연구 (Ⅰ) L-Lactic Acid 와 L-Glutamic Acid 공중합체의 합성 및 그의 물성)

  • Kim, Hong Beom;Seong, Yong Gil;Jeong, Jae Hui;Baek, Hyeong Ge;Min, Tae Jin;Kim, Yeong Sun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.203-210
    • /
    • 1990
  • As a possible biocompatible and biodegrable polymer skeleton for drug delivery system, block copolymers of L-lactic acid and L-glutamic acid with different composition were synthesized and characterized. Poly (L-lactide) was prepared by polymerization of L-lactide with zine oxide at $130^{\circ}C$ for 72 hrs. 3-Amino-l-propanol was introduced to poly (L-lactide) by an ester linkage in order to initiate polymerization. Polymerization of $\gamma-benzyl-L-glutamate-N-carboxyanhydride(\gamma-BLG-NCA)$ utiliizing the amino group of modified poly (L-lactide) as an initiator gave rise to the block copoly $(L-lactide-\gamma-benzyl-L-glutamate).$ The NMR study of resulting block copolymers showed that the composition of L-lactic acid and $\gamma-benzyl-L-glutamate$ in block copolymers was depended on the weight ratio of poly (L-lactide) and $\gamma-BLG-NCA.$ The thermal properties of the resulting block copolymers were determined by the differential scanning calorimetry and by the thermogravimetry.

  • PDF

Synthesis and Physical Properties of Biodegradable Polymers -Poly (glycine-co-lactic acid) and Poly (glycine-co-glycolic acid)- (생체분해성 고분자의 합성 및 물성에 관한 연구 -Poly (glycine-co-lactic acid) 와 Poly (glycine-co-glycolic acid)-)

  • 성용길;김정엽
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 1988
  • Synthetic biodegradable polymers are of great interest for biomedical applications such as surgical sutures and drug delivery systems. The copolymers of ${alpha}-amino$ acids and ${alpha}-hydroxy$ matrices having the required permeability for drugs. Poly (glycine.co-lactic acid) and poly (glycine-co-glycolic acid) have been synthesized by ring-opening polymerization. Morpholine-2, 5-diane, lactide, and glycolid have been used as starting materials for polydepsipeptides. The synthesized monomers and copoylmers have been identified by NMR and FT-lR spectrophotometer. The thermal properties and glass transition temperatures ($T_g$) of the copolymers have been measured by differential scanning calorimetry. The $T_g$ values of poly (glycine-co-lactic acid) and poly (glycine co.glycolic acid) are increased with increasing mole fraction of morpholine-2, 5-dione in the copolymers.

  • PDF

Preparation of High Range Water Reducer Containing Carboxylic Acid and Their Cement Absorptivity(I) (카르본산계 고성능감수제의 제조 및 그들의 시멘트 흡착성(I))

  • 김화중;강인규;김성훈;김우성;권영도
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.175-182
    • /
    • 1995
  • Styrene-Maleic anhydride copolymer (SMA) was prepared by the radical copolmerization of styrene and maleic anhydride using ${\alpha}-{\alpha}'$ azobis(isobutyronitrile) as an initiatrr. SMA was further reacted with m-amino phenol to obtain aminophenol-substituted SMR (mSMA). Sulfonated SMA and mSMA were also prepared by the reaction of copolymers with sulfuric acid The copolyniers were characterized by infrared spectroscopy. It was found from the results of elemental analysis that the substitution degree of aminophenol in the mSMR is 44% and the degree is lowered to 35% after sulfonation. The percentage of copolymers adsorbed on the surface of cement particles was increased with a decrease of added copolymers. While, the arnourit of sulfonated SMA absorbed on the surface of cement particles was larger than that of the sulfonated mSMA The copolymers synthesized in this study are probably expected as a high range water reducer for coiicxte.

Preparation of Amino Acid Copolymers/water-insoluble Drug Nanoparticles: Polymer Properties and Processing Variables (아미노산 공중합체/난용성 약물 나노입자의 제조: 고분자 특성 및 가공변수)

  • Yoo Ji Youn;Lee Soo-Jeong;Ahn Cheol-Hee;Choi Ji-Yeun;Lee Jonghwi
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.440-444
    • /
    • 2005
  • An increase in the surface area of drugs by reducing particle sizes from microns to nanometers has been known as an efficient method to improve the bioavailability of water-insoluble drugs. To prevent drug nanoparticles from aggregation during the processes of drug formulation, a limited number of pharmaceutical inactive ingredients such as hydroxypropyl cellulose has been employed as stabilizers or dispersants. In this study, copolymers of hydrophilic and hydrophobic amino acids were synthesized by the ring opening polymerization of their N-carboxyanhydride monomers and evaluated as novel candidates to stabilize the nanoparticles of a water insoluble drug, naproxen. Naproxen nanoparticles stabilized by synthesized amino acid copolymers were successfully prepared in the size of $200\~500nm$ in 60 min by a wet comminution process. Particle size analysis showed that the effective stabilization performance of copolymers required the hydrophobic moiety content to be higher than $10 mol\%$. However, the molecular weight and morphology of copolymers was not the critical parameters in determining the particle size reduction. Their particle size was found to be stable up to 14 days without significant aggregation.

Synthesis and pH-Dependent Micellization of a Novel Block Copolymer Containing s- Triazine Linkage

  • Pal Ravindra R.;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.373-384
    • /
    • 2005
  • Novel pH-sensitive moieties containing an s-triazine ring were synthesized with sulfonamide and secondary amino groups. The synthesized pH-sensitive moieties were used for the synthesis of a pH-sensitive amphiphilic ABA triblock copolymer. The pH-sensitive triblock copolymer was composed of diblock copolymers, methoxy poly(ethylene glycol)-poly ($\varepsilon$-caprolactone-co-D,L-lactide) (MPEG-PCLA), and pH-sensitive moiety. These copolymers could be dissolved molecularly in both acidic and basic aqueous media at room temperature due to secondary amino and sulfonamide groups. The synthesized s-triazine rings containing pH-sensitive compounds were characterized by ${^1}H-NMR,\;{^13}C-NMR$, and LC/MSD spectral data. The synthesized diblock and triblock copolymers were also characterized by ${^1}H-NMR$ and GPC analyses. The critical micelle concentrations at various pH conditions were determined by fluorescence technique using pyrene as a probe. Furthermore, the micellization and demicellization study of the triblock copolymer was done with pH-sensitive groups. The sensitivity towards pH change was further established by acid-base titration.

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

Prefluorescent-Dye-Induced Fluorescent Imaging based on Polymeric Photobase Generators

  • Chae, Kyu-Ho;Choi, Won-San;Kim, Yoo-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.177-177
    • /
    • 2006
  • Copolymers containing oxime-urethane groups, which led to the formation of pendant amino groups photochemically, were applied to a fluorescent image-recording material through the reaction with fluorescamine, a prefluorescent dye for amino groups. This imaging method permits the fluorescent image to be erased or restored by treatment with base or acid. Copolymers containing phthalimide carbamate groups were applied to a bicolor fluorescent imaging material through the consecutive reaction with fluorescamine and rhodamine. A various colored fluorescent micropattern (green, red or red-yellow) was observed through the changes of excitation wavelength by using a conforcal microscope.

  • PDF

Synthesis and Anti-HIV Activity of Sulfonated Amino Ribofuranans

  • Kang, Byoung-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.441-445
    • /
    • 2003
  • New sulfonated amino ribofuranans were synthesized to elucidate the relationship between structure and specific biological activities such as anti-HIV and blood anticoagulant activities. The synthesis was performed by sulfonation of copolymers having various proportion of (1$\rightarrow5)-\alpha$-D-ribofuranosidic unit. The sulfonation with piperidine N-sulfonic acid produced the sulfonated amino ribofuranans in high yield. The anti-HIV activity of sulfonated 3-amino-3-deoxy-(1$\rightarrow5)-\alpha$-D-ribofuranan showed more potent by increasing the degree of sulfonation and the average molecular weights. This activity was almost equal to the activities of sulfonated ribofuranans and ribopyranans reported before in spite of low molecular weight. The blood anticoagulant activities was observed at 36-48 mg/units, more potent than standard dextran sulfonate, 22.7 mg/units. In addition, the blood anticoagulant activities of sulfamide-copolysaccharide consisting various proportion of (1$\rightarrow5)-\alpha$-D-ribofuranan units were potentiated by increasing sulfonated amino-ribofuranan units from 13 to 21 mg/units.

Advances in Biodegradable Polymers for Drug Delivery Systems

  • Yong Kiel sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.8 no.5
    • /
    • pp.199-208
    • /
    • 2000
  • The recent development of biodegradable polymers for drug delivery system (DDS) has been investigated. The biodegradable polymers for DDS are mainly discussed in two categories: one category is natural biodegradable polymers such as polysaccharides, modified celluloses, poly(${\alpha}$-amino acid)s, modified proteins, and microbial biodegradable polymers; the other is synthetic biodegradable polymers such as poly(ester)s, poly(ortho ester)s, poly(phosphazene)s, poly(anhydride)s, poly(alkyl cyanoacrylate)s, and multiblock copolymers. The bioconjugate polymeric drug delivery systems have been also proposed for the design of biocompatible polymeric controlled drug delivery.

  • PDF

Synthesis and Characterization of Novel Amino Acid-conjugated Poly(aspartic acid) Derivatives

  • Kim, Seung-Il;Min, Seok-Kee;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1887-1892
    • /
    • 2008
  • Novel poly(aspartic acid) derivatives conjugated with L-lysine moieties and their amphiphilic analogs were synthesized and characterized. The chemical structures of these polymers were confirmed using FT-IR and $^1HNMR$ spectroscopy. The physicochemical properties of amphiphilic copolymers were characterized using an electrophonetic light scattering spectrophotometer (ELS) and transmission electron microscopy (TEM). These results indicated a stable nanoparticle formation within aqueous media. These polymers have potential applications in the pharmaceutical and cosmetic fields as delivery vehicles for bioactive molecules.