• 제목/요약/키워드: american ginseng

검색결과 156건 처리시간 0.025초

재배미국인삼의 화서형질 변이 (Variation in the Inflorescence of Cultivated American Ginseng (Panax quinquefolium L.))

  • Proctor, J.T.A.
    • Journal of Ginseng Research
    • /
    • 제10권1호
    • /
    • pp.76-79
    • /
    • 1986
  • Variation in the inflorescence of Oriental ginseng (Panax ginseng C.A. Meyer) have been placed in 6 groups; only 2 of these groups, a complete simple hemispherical terminal umbel, and a simple umbel with several branched pedicels below it on the peduncle were found in cultivated American ginseng. Apical peduncle reflexing and associated peduncles shortening were observed in a few plants.

  • PDF

토양 중 인산수준이 미국삼 종자출아, 유모결주율 및 식물생육에 미치는 영향 (Effect of Soil Phosphorus Levels on Seed Emergence, Seedling Mortality and Plant and Root Development of American Ginseng)

  • Thomas, S.L.Li;Michael, O.Wallis
    • Journal of Ginseng Research
    • /
    • 제18권2호
    • /
    • pp.134-136
    • /
    • 1994
  • The effects of soil phosphorus level on seed emergence, seedling mortality, plant and root development of American ginseng (Panax quinquefolium L.) were evaluated in a newly planted commercial ginseng garden. Phosphorus levels were increased from 58 ppm to 100, 150 and 200 ppm with triplephosphate (0-45-0). Higher phosphate levels increased, seed emergence and reduced seedling mortality. Root length, diameter, fresh root weight and total leaflet length were not affected by phosphate levels.

  • PDF

Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products

  • Jung, Juyeon;Kim, Kyung Hee;Yang, Kiwoung;Bang, Kyong-Hwan;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.123-129
    • /
    • 2014
  • Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.

Comparison of Seed Oil Characteristics from Korean Ginseng, Chinese Ginseng (Panax ginseng C.A. Meyer) and American Ginseng (Panax quinquefolium L.)

  • Zhu, Xue-Mei;Hu, Jiang-Ning;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Teak;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.275-281
    • /
    • 2010
  • The chemical characteristics of seed oils of Asian ginseng (Panax ginseng C.A. Meyer) at different ages grown in Korea (3, 4 and 5-year old) and China (5-year old), and American ginseng (Panax quinquefoliu L., 5-year old) grown in China were compared. Total fatty acid composition showed a significantly higher oleic acid content in American (87.50%) than in Korean (68.02~69.14%) and Chinese ginseng seed oils (61.19%). At the sn-2 position, the highest oleic acid (81.09%) and lowest linoleic acid (15.77%) were found in American ginseng seed oil. The main triacylglycerol species in ginseng seed oils were triolein (OOO) and 1,2-dioleoyl-3-linoleoyl-glycerol (LOO)/1,3-dioleoyl-2-linoleoyl-glycerol (OLO). In addition, the seed oils possessed an ideal oxidative stability showing 16.55~23.12 hr of induction time by Rancimat test. The results revealed that ginseng seed oil could be developed as a new healthy edible oil, and that the oil's chemical characteristics were strongly associated with the ginseng species and habitats.

High Temperature Drying of North American Ginseng for Management Decision Making

  • Bailey, W.G.;Dalfsen, K.B.van;Guo, Y.P.
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.141-145
    • /
    • 2003
  • The multi-year production cycle for ginseng can be rapidly depreciated by inferior post-harvest activities. This research examines the character of high temperature drying regimes for North American ginseng root to assist management decision making. The objective is a very rapid drying regime, that will not result in physical or chemical damage to the root and that would not alter the actual dry root weight. Research is presented using drying temperatures of 55, 70 and 105 C. Temperatures above these rapidly cause substantive physical damage to the root samples and seriously compromise the dry root values determined. Temperatures below these behaved quite similar to actual dryer regimes (approximately 38 C). Laboratory results indicate that there are differences between the three temperature regimes tested. Careful usage of the 70 C regime, over a period of two to three days in a convection drying oven, has distinct merit.

Characteristics of Third Year American Ginseng Root Yields for Lytton, British Columbia, Canada

  • Gin, H.;Bailey, W.G.;Wong, S.T.
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.147-152
    • /
    • 1989
  • The statistical characteristics of three year old American ginseng (Panax quinquefolium 1.) root yields from Lytton, British Columbia, Canada are presented. Ginseng root yield is related to plant density, with the highest yields generally obtained from the sites with the highest plant densities. However, these higher yields are made up of a larger proportion of smaller roots while the proportion of larger roots remains almost constant throughout the range of plant densities sampled. Further, it is suggested that relatively small samples can provide significant insight into crop performance and growth.

  • PDF

Production Practices for North American Ginseng: Challenges and Opportunities

  • Proctor John T.A.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.212-226
    • /
    • 2002
  • North American ginseng production may have been maximized in the traditional growing areas in the last decade and further increases may be in woods grown root, for niche markets. The marketplace demands high quality roots. Most problems leading to low quality roots start with the grower and can be avoided. These include poor site selection, inadequate soil drainage, untimely and poorly applied pesticides, and neglect of good sanitary practices. Selection of low lying sites increased the plant damage from frost in Ontario in May 2002. Seeding is still the major method of propagation of ginseng in spite of some success in culturing different parts of the plant. Opportunities exist for shortening the stratification period of North American ginseng seed to allow spring planting. This may reduce disease incidence. Since only one-third of ginseng seed sown ultimately produces plants harvested after 3 years any approach that reduces disease incidence and improves seed germination, seedling emergence and crop stand must be pursued. Disease is the major problem in ginseng cutivation from seed stratification, soil preparation prior to planting, right through to drying of the roots. Replant disease remains as an unresolved problem and needs full characterization and new approaches for control. Much progress has been made in research and related extension activities in disease control although challenges will arise such as with Quintozene and its replacement with Quadris for control of diseases caused by Rhizoctonia. Decreased labor populations and increased associated costs for ginseng production are causing rapid mechanization in every aspect of the ginseng industry. Engineers, machinery dealers, and fabricators, and growers are being challenged to increase efficiency by mechanization.

  • PDF

Canada British Cloumbia의 건조환경에서 일년생 및 이년생 미국인삼의 생육 (Growth of One and Two Year Old American Ginseng in an Arid Environment of British Columaia, Canada)

  • Baileyl, W.G.;Slathers, R.J.
    • Journal of Ginseng Research
    • /
    • 제15권1호
    • /
    • pp.36-40
    • /
    • 1991
  • A field experiment was conducted to examine the growth of one and two year old American ginseng (Panax guinguefolium L.) in the arid interior of British Columbia, Canada. For both years of plants, early season growth was characterized by rapid stem and leaf dry matter production. Root growth commenced in early June and continued until early September. One year old roots had a dry weight of 0.1 to 0.2g at the end of the growing season. The two years old roots commenced the growing season at 0.Is and increased in dry matter by a factor of ten-fold. Dry to fresh weight ratios for both years were similar for root, leaf and stem samples at the end of the growing season. Leaf area index for both years showed similarities in progression over the growing season. As a consequence of the effectiveness of the microclimate modification employed to permit American ginseng cultivation (elevated shade cloth and surface mulch), plant growth and development was extremely good. This indicates the potential for the cultivation of American ginseng in dryland environments.

  • PDF

Acclimation of maximum quantum yield of PSII and photosynthetic pigments of Panax quinquefolius L. to understory light

  • Fournier, Anick R.;T.A., John;Khanizadeh, Shahrokh;Gosselin, Andre;Dorais, Martine
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.347-356
    • /
    • 2008
  • Forest-grown American ginseng (Panax quinquefolius L.) is exposed to daily and seasonal light variations. Our goal was to determine the effect of understory light changes on the maximum quantum yield of photosystem II, expressed as $F_v/F_m$, and photosynthetic pigment composition of two-year-old plants. Understory light photon flux density and sunfleck durations were characterized using hemispherical canopy photography. Our results showed that understory light significantly affected the $F_v/F_m$ of American ginseng, especially during the initial development of the plants when light levels were the highest, averaging 28 mol $m^{-2}d^{-1}$. Associated with low $F_v/F_m$ during its initial development, American ginseng had the lowest levels of epoxidation state of the xanthophyll cycle of the season, suggesting an active dissipation of excess light energy absorbed by the chlorophyll pigments. As photon flux density decreased after the deployment of the forest canopy to less than 10 mol $m^{-2}d^{-1}$, chlorophyll a/b decreased suggesting a greater investment in light harvesting pigments to reaction centers in order to absorb the fleeting light energy.

Differentiation and authentication of Panax ginseng (Korea and China), Panax quinquefolius, and development of genetic marker by AFLP analysis.

  • Jeong, Jae-Hun;Jung, Su-Jin;Yun, Doh-Won;Yoon, Eui-Soo;Choi, Yong-Eui
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.157.2-157.2
    • /
    • 2003
  • Panax ginseng is one of the most important medicinal plant in the Orient. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in Korea and an abroad. Obviously, an effective method of authentication of Korean ginseng from others at a DNA level, is necessary for the healthy development of the ginseng market. In order to develop convenient and reproducible methods for the identification of Korean ginseng, amplified fragment length polymorphism (AFLP) analysis was applied within Panax species (Korean cultivatied and wild ginseng, Chinese wild ginseng, American cultivatied and wild ginseng). (omitted)

  • PDF