• Title/Summary/Keyword: ambient temperature

Search Result 2,432, Processing Time 0.024 seconds

A Study on the Characteristics of Spontaneous Ignition for Rice Cracker (쌀과자의 자연발화 특성에 관한 연구)

  • Kim, Hong;Kang, Young-Goo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 1995
  • Spontaneous ignition characteristics of rice cracker were observed by preforming experiments at constant ambient temperature. As the results of the experiments, the critical spontaneous ignition temperature were exponentially decreased with the increase of ambient temperature. Type of combustion of rice cracker are smouldering combustion at low ignition temperature and flame combustion at high temperature. The rice cracker containing pam oil showed lower spontaneous ignition temperature than pure rice cracker because of oxidation heat of pam oil.

  • PDF

Feasibility study of ambient cured geopolymer concrete -A review

  • Jindal, Bharat Bhushan
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.387-405
    • /
    • 2018
  • Geopolymer concrete is a fastest developing field of research for utilizing industrial and agro waste materials as an alternative for Portland cement based concrete. Geopolymers are formed by the alkaline activation of aluminosilicates rich materials termed as geopolymerization. The process of geopolymerization requires elevated temperature curing which restricts its application to precast industry. This review summarizes the work carried out on developing the geopolymer concrete with the addition of various mineral admixtures at ambient curing temperature conditions. An overview of studies promoting the geopolymer concrete in general building construction is presented. Literature study revealed that geopolymer concrete with the addition of admixtures can exhibit desirable properties at ambient temperature conditions.

A Study of Evaporation and Ignition Characteristics of Single Fuel Droplet (단일액적의 증발 및 착화특성에 관한 연구)

  • 백병준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.551-559
    • /
    • 1998
  • Evaporation and ignition characteristics of fuel droplet have major influences on the efficiency and performance of engine. In the present study the experiment of evaporation and self-ignition of single fuel was performed under the various ambient conditions. An individually suspended droplet of n-heptane n-hexadecane ethyl-alcohol and light oil were employed as a liquid droplet. Evaporation and ignition characteristics were measured by using the video-camera and image processing technique under the various ambient temperatures (up to 1000310 OC)and partial pressure of oxigen(up to 60%) The evaporation curve shows that the droplet life time ignition delay time decreases as the ambient temperature and partial pressure of oxigen increase, The temperature variations of droplet were also reported for various fuel and ambient temperatures. The numerical simulations were carried out to predict droplet diameter and temperature with favorable agreement.

  • PDF

Study of the Effects of Ambient Temperature and Car Heater Power on the Train Cabin Temperature (외기 온도와 난방 출력의 철도차량 객실 온도에 대한 영향 연구)

  • Cho, Youngmin;Park, Duck-Shin;Kwon, Soon-Bark;Jung, Woo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5877-5884
    • /
    • 2014
  • Recently, abnormally cold weather has been reported more frequently in winter due to the climate change and abnormal weather changes. On the other hand, the heating capacity of a railcar may be not enough to warm the cabin under severe cold climatic conditions, which is one of the reasons for the passengers' complaints about heating. In this study, the effects of ambient temperature and heater power on the cabin temperature was investigated to obtain the minimum ambient temperature for the tested railcar. The test railcar was placed in a large-climatic chamber, and various ambient temperature conditions were simulated. The effects of the heater output were investigated by monitoring the cabin temperature under a range of heater output conditions. The mean cabin temperature was $14.0^{\circ}C$, which was far lower than the required minimum temperature of $18^{\circ}C$, under a $-10^{\circ}C$ ambient temperature condition with the maximum heat power. When the ambient temperature was set to $0^{\circ}C$ and $10^{\circ}C$, the maximum achievable cabin temperature was $26.1^{\circ}C$ and $34.0^{\circ}C$. Through calculations using the interpolation method, the minimum ambient temperature to maintain an $18^{\circ}C$ cabin temperature was $-6.7^{\circ}C$ for this car. The vertical temperature difference was higher with a higher power output and higher ambient temperature. The maximum vertical temperature difference was higher than $10^{\circ}C$ in some cases. However, the horizontal temperature difference vs. low temperature (< $2^{\circ}C$) was independent of the power output and ambient temperature. As a result, it is very important to reduce the vertical temperature difference to achieve good heating performance.

Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing (외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향)

  • Hyunwoo Cho;Youngwoo Kim;Yongbum Kwon;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

Electrical Switching Effects in the Sintered $Fe_2O_3$-$Bi_2O_3$ ($Fe_2O_3$-$Bi_2O_3$ 소결체의 전기적 Switching 특성(I))

  • 정환재
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.6
    • /
    • pp.11-15
    • /
    • 1979
  • Electrical switching phenomenon was observed in the Fe2O3-Bi2O3 system for the sintering temperature range of 700$^{\circ}$~85$0^{\circ}C$ for DC conductivity measurements of these sinterd materials in the ambient temperature range of 30$^{\circ}$~20$0^{\circ}C$ have shown that the conductivity increases with increasing the sitering temperature and ambient temperature. The formation of the current channel and the experimental evidence of the dependence of switching threshold voltage on the ambient temperature, strongly indicates that the main electrical switching mechanism of sintered Fe2O3-Bi2O3 is thermal effect.

  • PDF

The Properties of Rheology of Underwater-Hardening Epoxy Resin According to the Temperature (온도에 따른 수중경화형 에폭시수지의 레올로지 특성)

  • Jung Eun-Hye;Kang Cheol;Kawg Eun-Gu;Bae Kee-Sun;Lee Dae-Kyung;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.49-52
    • /
    • 2006
  • Epoxy resin has less reaction shrinkage, has better water proofing and thermal resistance than other repairing materials, to it has been applied broadly to repair and finish buildings and infrastructures. Although the ambient temperature constructed is varied with the seasons and epoxy resin has to mix with appropriate hardener due to the non self-hardening, as the real construction of it, the ambient temperature is ignored and the blending ration of epoxy resin and hardener is fixed. Also, because of the hardening time is aimed to temperature condition and the tolerance of blending ratio, we investigated the variation of viscosity according to ambient temperatures and hardener ratios. As a results of study, we can select the economical blending ratio of the epoxy resin and hardener according to site situation.

  • PDF

Numerical modeling of slipforming operations

  • Lachemi, M.;Elimov, R.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 2007
  • Slipforming is a construction method in which the forms move continuously during concrete placement. This paper presents a numerical procedure based on the finite element method to simulate the thermal behavior of concrete during slipforming operations. The validity of the model was successfully tested by simulating a very complex but well documented field case of actual slipforming operations performed during the construction of an offshore concrete oil platform structure. The results obtained have been related to the shape of the concrete "hardened front" in the forms, which allows quick evaluation of the operation. The results of the numerical investigation have shown that the shape of the "hardened front" can be affected by the temperature of the fresh concrete and ambient conditions. For a given initial concrete temperature, there are limitations for the ambient temperature that, when exceeded, can create an unfavorable shape of the concrete "hardened front" in the forms. Similarly, for a given ambient temperature, the initial concrete temperature should not be fall below an established limit in order to avoid unfavorable shape of the "hardened front".

Yield Response of Soybean [Glycine max (L.) Merrill] to High Temperature Condition in a Temperature Gradient Chamber

  • Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a medium- seed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1℃ (ambient temperature+1℃), aT+2℃ (ambient temperature+2℃), aT+3℃ (ambient temperature+3℃) and aT+4℃ (ambient temperature+4℃) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.

Storage Characteristics of Low Temperature Grain Warehouse using Ambient Cold Air in Winter

  • Ning, Xiao Feng;Li, He;Kang, Tae-Hwan;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.184-191
    • /
    • 2012
  • Purpose: This study was conducted to investigate the storage and quality characteristics of brown rice under the low temperature warehouse conditions using ambient cold air in the winter. Methods: This new technique maintains rough rice warehouse temperature below $15^{\circ}C$ without cooling operation until the end of May. Four hundred tons of rough rice were stored in the low temperature grain warehouse, and were aerated from the top to the bottom using ambient cold air in February. The quality of rough rice was evaluated from February through October. Results: The results were as followings. Moisture contents of rough rice in the low temperature storage had decreased less than the ordinary temperature storage. Cracked rate of brown rice in the ordinary temperature storage and low temperature storage increased by 4~10.8% and 1.6~7.2%, respectively. The germination rate of rough rice under the ordinary and the low temperature warehouse decreased by 15.0~25.0% and 1.7~8.0%, respectively. The acid value of brown rice under the ordinary and the low temperature warehouse increased by 3.67~6.72 KOH mg/100g and 3.08~4.08 KOH mg/100g, respectively. Conclusions: The result indicates that low temperature storage using ambient winter air showed better maintaining germination of rice, less change of physiological activities and cracked kernel, and better maintaining of rice quality, comparing the ordinary temperature storage.