• Title/Summary/Keyword: ambient $CO_2$

Search Result 452, Processing Time 0.025 seconds

Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul (광도가 서울 대기의 오존 생성 및 에어로졸 수 농도에 미치는 영향)

  • Bae, Gwi-Nam;Park, Ju-Yeon;Kim, Min Cheol;Lee, Seung-Bok;Moon, Kil-Choo;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.4 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • The effect of light intensity on the ozone formation and the aerosol number concentration during the photochemical reactions of ambient air was investigated in an indoor smog chamber. The smog chamber consists of a housing, 64 blacklights, and a $2.5-m^3$ reaction bag made of Teflon film. The bag was filled with the unfiltered ambient air in Seoul from January 10 to March 18, 2002. In this work, the photolysis rate of $NO_2$, $k_1$ was used as an index of light intensity. Three levels of light intensity were controlled by changing the number of blacklights turned on among 64 blacklights: $0.29min^{-1}$ (50%), $0.44min^{-1}$ (75%), $0.57min^{-1}$ (100%). The ozone concentration increased rapidly within 10 minutes after irradiation irrespective of light intensity, thereafter it increased linearly during the irradiation. The ozone production rate seems to be dependent on both the light intensity and the quality of ambient air introduced into the reaction bag. The change in aerosol number concentration also depended on both the light intensity and the ambient air quality, especially aerosol size distribution. Based on the initial ambient aerosol size distributions, the photochemical potential for aerosol formation and growth is classified into two cases. One is the case showing aerosol formation and growth processes, and the other is the case showing no apparent change in particle size distribution.

  • PDF

Hydrothermal Synthesis of LaCO3OH and Ln3+-doped LaCO3OH Powders under Ambient Pressure and Their Transformation to La2O2CO3 and La2O3

  • Lee, Min-Ho;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3609-3614
    • /
    • 2013
  • Orthorhombic and hexagonal lanthanum(III) hydroxycarbonate ($LaCO_3OH$) and $Ln^{3+}$-doped $LaCO_3OH$ ($LaCO_3OH:Ln^{3+}$, where Ln = Ce, Eu, Tb, and Ho) powders were prepared by a hydrothermal reaction under ambient pressure and characterized by thermogravimetry, powder X-ray diffraction, infrared and luminescence spectroscopy, and field-emission scanning electron microscopy. The polymorph of $LaCO_3OH$ depended on the reaction temperature, inorganic salt additive, species of $Ln^{3+}$ dopant, and solvent. The calcination of orthorhombic $LaCO_3OH:Ln^{3+}$ (2 mol %) powers at $600^{\circ}C$ yielded a mixture of hexagonal and monoclinic $La_2O_2CO_3:Ln^{3+}$ powders. The relative quantity of the latter increased with decreasing ionic radius of the $Ln^{3+}$ dopant ion and increasing doping concentrations. On the other hand, the calcination of hexagonal $LaCO_3OH:Ln^{3+}$ (2 mol %) powders at $600^{\circ}C$ resulted in a pure hexagonal $La_2O_2CO_3:Ln^{3+}$ powder, regardless of the species of $Ln^{3+}$ ions (Ln = Ce, Eu, and Tb). The luminescence spectra of $LaCO_3OH:Ln^{3+}$ and $La_2O_2CO_3:Ln^{3+}$ were measured to examine the effect of their polymorph on the spectra.

Effects of Elevated $CO_2$ and Global Warming on Growth Parameters, Biomass Production and Its Partitioning of Rice ($CO_2$ 농도의 상승과 온난화환경이 수도의 생장, 물질생산 및 그 분배에 미치는 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • The influence of elevated CO2 and temperature on growth parameters, biomass production and its partitioning of rice (Oryza sativa L.cv. Chukwangbyeo) were investigated in the three experiments (1991-1993). Rice plants were grown from transplanting to harvest at either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in combination with either four or seven temperature regimes ranging form ambient temperature (AT) to AT plus 3$^{\circ}C$.From transplanting to panicle initiation, crop growth rate (CGR) was enhanced by up to 27% with elevated CO2 , primarily due to an an increase in leaf area index. although net assimilatiion rate was also greater at elevated CO2. The effect of elevated CO2 varied with temperature. During the reproductive phase, CGR declined linearly with increased temperature, and was greater at elevated CO2 . Elevated CO2 increased final crop biomass and panicle weight 30% respectively at AT(27.6$^{\circ}C$ : 1991) . However, there was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was also no effect of CO2 on biomass pratitioning into vegetative and reproductive organs (harvest index)) at AT, although higher temperature could affect that by inducing spikelet sterility. These results suggest that elevated CO2 could enhance rice producivity througth promoted growth and biomass production , but its positive effects may be less at higher temperatures.

  • PDF

Effects of Elevated CO2 and Temperate on the Growth of Endangered Species, Cicuta virosa L. in Korea (CO2농도와 온도 상승이 한국멸종위기식물 독미나리의 생장에 주는 영향)

  • Park, Jae Hoon;Hong, Yong Sik;Kim, Hae Ran;Jeong, Jung Kyu;Jeong, Heon Mo;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • The effect of elevated $CO_2$ and temperature on ecological characteristics of Cicuta virosa L., the endangered plant were examined under ambient $CO_2$+ambient temperature(AC-AT), ambient $CO_2$+elevated temperature(AC-ET) and elevated $CO_2$+elevated temperature for two years. Shoot length and the number of umbels were not different in three environmental gradients. The number of tillers was high in the order of EC-ET, AC-ET and AC-AT. The number of compound umbel was the lowest in the EC-ET. Fruit set rate was the highest in the AC-AT. These results mean that unsexual propagation of C. virosa may increase by promoting growth of tillers, rather than seed production under future global warming. This population growth study will be used as the important data for the research of Korean endangered species.

Effects of environmental factors on the growth response of above- and below-ground parts of Mankyua chejuense, endangered endemic plant to Jeju province, in Korea

  • Kim, Hae-Ran;Shin, Jeong-Hoon;Jeong, Heon-Mo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Mankyua chejuense is a native endangered plant distributed only in Gotzawal, a forested wetland, in Jeju Province, Korea. In order to determine the optimal environmental conditions for the growth and development of M. chejuense, we investigated the above- and below-ground growth responses and survival rate to various soil texture (sand and clay), water regimes (flooding and non-flooding), and $CO_2+T$ (ambient and elevated) conditions. All of the treatments had significant effects on aboveground growth parameters, while only the water regime and $CO_2+T$ treatments influenced belowground growth. The survival rate of M. chejuense was about twice higher under the sand, non-flooding and elevated $CO_2+T$ conditions than clay, flooding and ambient $CO_2+T$ conditions. These results indicate that M. chejuense grows in well-drained sandy soil conditions and elevated $CO_2$ concentration and temperature situations. Thus, there is a need to maintain M. chejuense under constant non-flooding soil conditions by implementing appropriate soil drainage strategies.

Diurnal Variation of $CO_2$ Concentration and Air Temperature inb Polyethylene Film Covered Rice Seedbed Subjected to Various Ventilation Methods (벼 보온절충 못자리의 바람트기 방법에 따른 상내 2산화탄소 농도와 기온의 일변화)

  • 윤성호;이변우;김병찬;이정택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.543-547
    • /
    • 1990
  • Diurnal courses of $CO_2$ concentration and air temperature in the rice seedbed tunnel covered with polyethylene film, subjected to three different ventilation methods, were traced. Regaredless of ventilation methods, $CO_2$ concentrations in the tunnel on a clear day were lower than that in ambient air, and vice versa before dawn. $CO_2$ concentration during the day was lowest in the tunnel with non-ventilation (NV), followed by horizontal slit ventilation (HSV) and traditional one(TN), reaching down to the lowest level of 58ppm, 155ppm and 272ppm, respectively. Air temperature in the tunnel reached 46$^{\circ}C$ in NV, 37$^{\circ}C$ in HSV and 32$^{\circ}C$ in TV at the daytime when ambient air temperature was 22$^{\circ}C$. Even at night time of ambient air temperature below 15$^{\circ}C$, HSV was more effective than TV in raising the air temperature in the tunnel. The dry weight of 40-day old seedling weighed heaviest in HSV, followed by TV and NV.

  • PDF

Characterization of Air Quality in Various Types of Indoor Environments in Urban Areas - Focusing on Homes, Offices, and Restaurants - (도시지역 실내환경 유형별 공기질 특성 평가 -가정, 사무실 및 식당을 중심으로-)

  • 백성옥;김윤신
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.343-360
    • /
    • 1998
  • In this study, comprehensive air quality monitoring was undertaken with a variety of objectives to collect data on the levels of various indoor and ambient air quality parameters in the urban areas of Seoul and Taegu. The sampling sites were comprised of six offices, six residences and six restaurants in each city. The ambient air adjacent to the indoor sites was also simultaneously sampled for the same constituents. The sampling was conducted in two phases: summer of 1994 and winter of 1994/95. A range of air quality parameters were measured simultaneously, which include RSP, CO, COB, NOB, a range of VOC, airborne microbials, temperature, and relative humidity. The indoor and ambient levels of the pollutants measured in this study varied widely between the three types of environments studied. Comparison of median values for the three groups revealed that restaurants had higher indoor levels of most pollutants than homes or offices. There was also a clear pattern of the indoor levels of target pollutants being higher than those outdoors, particularly in restaurants. Concentrations of CO and most of the VOC were found to be significantly higher in the commercial districts, indicating the influence of vehicle exhaust emissions. A very wide range of VOC levels was documented in this study. Although median indoorloutdoor ratios indicated a generally increasing level of VOC indoors when compared to those outdoors, no statistically significant differences were found between indoor and outdoor VOC levels in homes and offices, implying the importance of ambient air quality in determining the quality of indoor air for homes and offices in urban areas. In addition, there was a general pattern of increasing concentrations from summer to winter, and similarly from outdoor to indoor air for nearly all target compounds. The seasonal differences in median levels were very clearly seen for fuel combustion related pollutants such as RSP, CO and VOC, this being attributed to the effects of increased fuel consumption during the cold season and to meteorological factors.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor -Burned Gas Analysis- (물혼합에 의한 메탄-공기 예혼합기의 연소(4) - 연소가스분석-)

  • Kwon, Soon-Ik;Kim, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Burned gas of methane-air mixtures with water vapor have been analysed to study the exhaust emission using gas-chromatography and computation. The computations were carried out for the gas analysis using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.6 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed CO, $CO_2$ decreased and $H_2$ increased by increasing the water contents. The CO increased and $CO_2$ decreased by increasing the ambient temperature. The $CO_2$ shows the maximum product at equivalence ratio 1.0, in otherwise the $CH_4$ produced the minimum values in the same range. The results showed little difference between these two methods.

Effect of Elevated TEX>$CO_2$ and Temperature on Nitrogen Responses in Rice (수도의 질소반응에 미치는 고$CO_2$농도 및 온도의 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.119-123
    • /
    • 1998
  • Effects of elevated CO2 and temperature on nitrogen (N) uptake , leaf N concentration, N partitioning , N use efficiency (NUE) and grain yield of pot and field grown rice (Oryza sativa. L.cv. Chukwangbyeo) under canopy-like conditions were studied over three years. Rice plants were grown in pots and in the field in temperature gradient chambers containing either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in conbination with either four or seven temperature regimes ranging form ambient temperature(AT) to AT plus 3$^{\circ}C$. There were three N supplies 94g or 6g m-2 to 20g or 48g m-2.Elevated CO2 increased N uptake in field-grown rice ; the magnitude of this effect was thelargest (+15%) at the highest N level. However, in pot-grown rice, N uptake was suppressed with the effect was the largest at high N levels. Leaf N concentration declined at elevated CO2 mainly due to a decrease in N partitiioning to the leaf blades. Air temperature had little effect on the N parameters mentioned previously, wherease NUE for spikelet production declined rapidly with increased temperature irrespective of CO2 concentration. The response of the biomass to elevated CO2 varied with N level, with the greatest response at 20g N m-2 (+30%) . At AT, where high temperature-induced sterility was generally not observed, elevated CO2 increased yield. However, the magnitude of this effect varied greatly (2-39%) with N level, and was mainly dependent on the magnitude of the increase in spikelet number.

  • PDF

Effects of Elevated CO2 Concentration and Increased Temperature on the Growth of Gastrodia elata Blume, Parasitic Medicinal Plant (CO2 농도와 온도 변화가 기생 약초인 천마의 생육반응에 미치는 영향)

  • Cho, Kyu-Tae;Lee, Soo-In;Jang, Rae-Ha;Park, Jae-Hoon;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.557-563
    • /
    • 2017
  • Gastrodia elata (Orchidaceae) is a perennial parasitic plant that has a unique lifestyle of being in a symbiotic interaction with fungi. The underground root of Gastrodia is used for medicinal treatment to cure high blood pressure, stroke, leukemia, headaches, and especially neurasthenia. This study is intended to investigate the effect of the global warming on the ecological responses of Gastrodia. We cultivated the small tuber of Gastrodia with the oak wood lot and mulberry fungus under control (ambient $CO_2$ concentration + ambient temperature, ACAT), temperature treatment (ambient $CO_2$ concentration+elevated temperature, ACET), and $CO_2$+temperature treatment (elevated $CO_2$ concentration+elevated temperature, ECET). The elevated $CO_2$ concentration was about twice in the ambient air while the elevated temperature was about $2^{\circ}C$ higher than the control group. And then we observed the growth and production of reproductive organs and the underground root. The observation showed that the number of flower stalk was highest at ACET and lowest at ECET. The flower stalk was longest at ACET and shortest at ECET. The inflorescence was longest at ACAT and shortest at ECET. The seed capsule was heaviest at ACET and lightest at ECET. The aboveground biomass was highest at ACET and lowest at ECET. The number of rhizomes was highest at ACET and lowest at ECET. The total rhizome biomass was highest at ACET and lowest at ECET. The average rhizome biomass was highest at ACET and lowest at ECET. The results showed that the growth of Gastrodia increased because of more active growth of Gastrodia elata when only the temperature increased and decreased when both $CO_2$ concentration and temperature increased, indicating the poor growth of Gastrodia elata under the global warming condition. Therefore, the Gastrodia elata plantation should be maintained at the temperature of $20-25^{\circ}C$ and not be exposed to a high $CO_2$ concentration.