• Title/Summary/Keyword: aluminum composite

Search Result 712, Processing Time 0.029 seconds

A Study on the Fatigue Characteristics of Aluminum Repaired by Unidirectional Graphite/Epoxy Composites (일방향 탄소섬유/에폭시 복합재 패치로 보수된 알루미늄의 피로특성에 대한 연구)

  • 김만태;신명근;한운용;이지훈;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1386-1388
    • /
    • 2003
  • In this study. the fatigue behavior of cracked aluminum repaired by unidirectional graphite/epoxy composites was experimentally investigated. The aluminum used was 7075-T6 and the patch used was four plied unidirectional ([0]$_4$) composites. The composite patch was adhesively bonded to the cracked aluminum using secondary bonding procedure. Two different specimens of cracked aluminum and cracked aluminum repaired with patch were used in the fatigue tests. Load ratio and the frequency applied in the fatigue tests were 0 and 10 Hz, respectively. The results showed that the fatigue behavior of cracked aluminum was improved by repairing the cracked area with composite patch. Specifically, the specimen repaired by composite patch showed 30% more improved fatigue behavior than regular specimen.

  • PDF

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

Study of Peel Strength Property of Aluminum/Organic Composite (알루미늄/유기물 복합재료의 Peel 강도 특성에 대한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Kim, Seoung-Taek;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.217-218
    • /
    • 2007
  • Aluminum 분말과 고분자를 혼합하여 고분자-금속 복합재료(polymer-metal composite)를 만들어 copper foil과 기판의 접착력을 평가하였다. Tape casting 방법을 이용하여 sheet 만들고 vacuum lamination으로 PCB(Printed Circuit Board)기판을 제조한 후 포토공정으로 peel strength pattern을 형성하였으며, 본 연구에서는 최적의 aluminum 조건을 찾기 위하여 압력, 온도, copper foil의 표면 상태와 silane 표면 코팅에 따른 aluminum-polymer복합재료의 peel strength의 변화를 확인하였다. 최적의 조건은 silane 표면 코팅 처리를 한 aluminum 분말로 $210^{\circ}C$에서 $9.7kg/cm^2$ 압력으로 matte면의 돌기 크기가 크며, 응집이 잘 되어있는 copper foil을 사용하여 13.89N의 우수한 peel strength를 구현 할 수 있었다.

  • PDF

Fabrication of Carbon Fiber/Aluminum Preforms using Cylindrical Sputtering System (원통형 스퍼터링 장치를 이용한 탄소섬유/알루미늄 프리폼의 제작)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to prepare a high-strength Fiberglass Reinforced Metal (FRM). Aluminum covering over carbon fibers (CF) was made to increase their wettability to molten aluminum. A cylindrical sputtering apparatus was used for the covering. One tow of carbon fibers was placed along the central axis of the cylindrical target. Aluminum was uniformly coated around the carbon fiber tow. But in case of CF without sizing treatment, aluminum spread into the inside of the tow. Preforms of carbon fiber/aluminum composite were made by impregnating carbon fiber with molten aluminum. Contact angle of molten aluminum to the aluminum-coated carbon fiber was about $30^{\circ}$. The fractured section of preform was observed by SEM, which showed that molten aluminum wetted the outer part of the tow well but had not penetrated into the center, and that adhesion between CF and aluminum matrix was in good condition.

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

NUMERICAL STUDY ON THE EFFECT OF EXTERNAL AIR VELOCITY AND DIRECTION ON FLAME SPREAD IN HIGH RISE BUILDING WITH THE ALUMINUM COMPOSITE EXTERNAL MATERIALS (알루미늄 복합 외장재를 사용한 고층 건축물의 외기 풍속, 풍향 변화가 화염전파에 미치는 영향에 대한 수치해석 연구)

  • Kim, H.J;Bae, S.Y.;Choi, Y.K.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.225-229
    • /
    • 2011
  • The aluminum composite panel are widely used for the external materials of high rise building because of well insulation of heat and sound and improved Constructability. However, the polyethylene in main material of the aluminum composite panel shows weakness in thermal and fire resistances. For this reason, flame is spread more quickly when the fire break out. Therefore, the potentiality of fire spread to the exterior wall is high due to difficulty of early extinguishment and effect of external air. In this study, numerical investigation was performed by using FDS program for flame spread characteristics with various external air velocity and direction in ten-story building with the aluminum composite external materials. As a result, the flame spread velocity is 0.134m/s and it takes 224 seconds for flames to spread to the 10th floor without external air velocity. however, the flame spread velocity decreases 40% and it takes 348 seconds for flames to spread to the 10th floor when external air velocity is 2.5 m/s. and air direction is little effect compared to air velocity.

  • PDF

Development of Metal Composite Powder Non-corrosive Flux for Low Temperature Forming of the Aluminum Brazing Filler Material (비부식성 플럭스를 이용한 알루미늄 브레이징용 필러 소재의 저온 성형용 금속 복합 분말 개발)

  • Kim, Dae-Young;Jang, Ha-Neul;Yoon, Dae-Ho;Shin, Yun-Ho;Kim, Seong-Ho;Choi, Hyun-Joo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving non-corrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.

A Study on the Nonlinear Structural Behavior of a High-Pressure Filament Wound Composite Vessel (소형 복합재료 고압력 용기에 대한 비선형적 구조거동에 관한 연구)

  • 황경정;박지상;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.10-14
    • /
    • 2002
  • Structural behavior of high-pressure composite vessels of TYPE 3 (full-wrapped over a seamless aluminum liner) was studied through numerical simulations based on 3D nonlinear finite element method. Under high-pressure loading, a TYPE 3 composite vessel shows material nonlinearity due to elastic-plastic deformation of aluminum liner, and mismatch of deformation at the junction of cylinder and dome causes geometrical nonlinearity. Finite element modeling and analysis technique considering this nonlinearity was presented, and a pressure vessel of 6.8L of internal volume was analyzed. Design specification to satisfy requirements was determined based on analysis results.

  • PDF

Mechanical behavior of composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate under thermo-mechanical loading

  • Bensatallah Tayeb;Rabahi Abderezak;Tahar Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.133-151
    • /
    • 2024
  • In this paper, an improved theoretical interfacial stress analysis is presented for simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results.It is shown that both the sliding and the shear stress at the interface are influenced by the material and geometry parameters of the composite beam. This new solution is intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters.