• Title/Summary/Keyword: aluminium platform

Search Result 5, Processing Time 0.022 seconds

Method for determining the design load of an aluminium handrail on an offshore platform

  • Kim, Yeon Ho;Park, Joo Shin;Lee, Dong Hun;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.511-525
    • /
    • 2021
  • Aluminium outfitting is widely used in offshore platforms owing to its anti-corrosion ability and its light weight. However, various standards exist (ISO, NORSOK and EN) for the design of handrails used in offshore platforms, and different suppliers have different criteria. This causes great confusion for designers. Moreover, the design load required by the standards is not clearly defined or is uncertain. Thus, many offshore projects reference previous project details or are conservatively designed without additional clarification. In this study, all of the codes and standards were reviewed and analysed through prior studies, and data on variable factors that directly and indirectly affect the handrails applied to offshore platforms were analysed. A total of 50 handrail design load scenarios were proposed through deterministic and probabilistic approaches. To verify the proposed new handrail design load selection scenario, structural analysis was performed using SACS (offshore structural analysis software). This new proposal through deterministic and probabilistic approaches is expected to improve safety by clarifying the purpose of the handrails. Furthermore, the acceptance criteria for probabilistic scenarios for handrails suggest considering the frequency of handrail use and the design life of offshore platforms to prevent excessive design. This study is expected to prevent trial and error in handrail design while maintaining overall worker safety by applying a loading scenario suitable for the project environment to enable optimal handrail design.

A Development of Platforms for Boiler of Thermal Power Plant (화력발전소 보일러 수퍼히트부 안전발판 개발 연구)

  • Lee, Jung Seok;Lee, Dong Lark;Kim, Hee Kyung;Jeong, Byeong Yong;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • The catastrophic collapse of the in-boiler scaffolding system in the two thermal power plants occurred in March and April 2012. After site investigation and document review, it was found that the specialized scaffolding system was imported for overhaul & maintenance and that the system did not get the safety certification at the import. In this regard, this study developed & proposed an access platform and a support for the vertical tube section of the super heat as well as a variable-length platform for the horizontal tube section, satisfying the domestic certification standards. The access platform was developed to be easy to handle by the worker with a weight of about 0.069 kN, which could reduce the risk of falling accidents and workers' musculoskeletal diseases. For the variable-length platform, it is possible to cope with various changes in length between the horizontal tubes associated with the increase of rigidity in the overlapping and the elimination of the protrusion.

Methodology of Strength Analysis of Socket for AL Handrail in Offshore Platform (해양플랫폼 알루미늄 핸드레일 적용을 위한 소켓 구조강도 평가법)

  • Kim, Yeon-Ho;Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.354-360
    • /
    • 2022
  • The aluminum handrails used for promoting structural strength and weight reduction of the topside in an offshore platform are designed according to international standards (ISO, NORSOK, and Austria Standard), and consider the most conservative load combinations. Existing aluminum handrails are bolted to a socket when installed on the topside of a platform, and the amount of deflection of the handrail is largely influenced by the socket design. However, the importance of socket design has been overlooked, and furthermore, separate evaluation procedures or guidance for socket design are ambiguous. Therefore, a series analysis was performed for estimating the structural strength of aluminum handrails to obtain the governing parameters that minimize their deflection against loads. Experimental verification was performed to validate the structural safety of the new model, and we confirmed that all were satisfied within allowable deflection according to international standards. The developed model could be used in several areas in the future as it is lighter and more productive compared to existing models from overseas makers.

Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 시멘테이션에 의한 백금족(白金族) 금속(金屬)의 회수(回收))

  • Kim, Min-Seuk;Kim, Byung-Su;Kim, Eun-Young;Kim, Soo-Kyung;Ryu, Jae-Wook;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.36-45
    • /
    • 2011
  • The recovery of platinum group metals (PGMs) from the leach solution of spent auto-catalyst and the wash solution of the leach residue was investigated in the laboratory scale experiments by the cementation process using metal powders as the reductant. In this study, the effect of Al, Mg and Zn powders on the cementation process was particularly examined. Aluminum powder was selected as the most suitable reductant for the cementation of PGMs. At the cementation time of 10 minute under the aluminium stoichimetric amount of 19.3 and the reaction temperature of $50{\sim}60^{\circ}C$, the recovery of platinum group metals from the leach solution of the spent auto-catalyst was found to be 99.3%, 99.4%, 90.2% for Pt, Pd and Rh, respectively. Under the same conditions with the aluminium stoichimetric amount of 45, the recovery of platinum group metals from the wash solution of the leach residue of spent catalyst was observed to be 97%, 97% and 90% for Pt, Pd and Rh, respectively. In addition, it was possible to upgrade the platinum group metals in the precipitates obtained from the cementation process by about 10% through the removal of metal impurities by the nitric acid leaching at ambient temperature.

Optimization of the Passenger Safety Door(PSD) Part using Response Surface Method (반응표면법에 의한 승강장 안전문(PSD) 부재의 최적화)

  • Lee, Jae-Hwan;Kim, Jin-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • In this paper, the structural analysis and optimization of the door supporting rail structure in the header box located at the top of the aluminum passenger safety door(PSD) at the subway station, which opens and closes regularly, is performed. In case the simple fixed boundary condition is used for the bolt fixture on the supporting rail where the glass door is moving, excessive stresses are obtained. Therefore, more realistic finite element modeling of the bolts is used at the bolt fixture in the whole structure in order to obtain the more physically acceptable FEM results. As a result, fatigue life of twenty years of the structure is obtained to satisfy the design object. Also the optimal design of cross section of the rail part is performed using the response surface method and 15% of weight of the supporting rail part on the door is reduced.