• Title/Summary/Keyword: aluminium alloys

Search Result 180, Processing Time 0.032 seconds

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys (Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF

A Study on the Microstructure and Hardness of Al-Si-Mg Alloys upon Heat Treatments (Al-Si-Mg계 합금의 열처리에 의한 미세조직과 경도 변화)

  • Lee, Se-Jong;Lee, Sung-Kwan;Baik, Nam-Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • The effects of heat treatments in Al-Si-Mg alloys on the microstructure and hardness have been investigated by the optical microscope, scanning electron microscope(SEM), and Rockwell hardness tester. The materials of various compositions are melted in a vacuum induction furnace under argon atmosphere. Five different Al alloys are prepared from commercial purity aluminium, magnesium and Al-25Si alloy. Two types of aging treatments are performed: i) Isothermal aging of the specimens at $150^{\circ}C$, $170^{\circ}C$ and $190^{\circ}C$. ii) Pre-aging of the specimens at $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, and followed by final-aging at $170^{\circ}C$ and $190^{\circ}C$. After the heat treatments, Rockwell hardness are measured with all the specimens.

  • PDF

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Jang C. W.;Kim S. K.;Han S. H.;Seo Y. K.;Kang C. G.;Lee J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6 (Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구)

  • Baek, Sang-Yeob;Park, Kyung-Do;Kim, Won-Il;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

Adhesion of aluminium alloys: morphology, surface chemistry and adhesive bond durability

  • Vaslier, L.;Moutarlier, V.;Gigandet, M.P.;Grisel, M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.362-362
    • /
    • 2006
  • Chromic acid anodizing of aluminium is an effective process for producing a substrate which provides excellent surface properties to assembly. However, new chromium-free finishing metal treatments are being developed to reach new environmental goals. Present study deals with chromium free experimental conditions for both deoxidizing and anodizing treatments. Results clearly demonstrate the potentiality for environmentally friendly treatments to get suitable metal-adhesive performance. In particular, the role of both metal surface porosity and chemical composition has been highlighted thus allowing to propose alternative to classical treatments for aeronautic applications.

  • PDF

Technologies for Robotized Welding of Big Aluminium Structures with Tolerances for High Speed Trains (고속 열차용 대형 알루미늄 부품의 GAP 대응 로봇 자동화 용접 기술)

  • Lee, Sang Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Robotized MIG welding of large aluminium components for high speed trains is state-of-the-art. The implementation of online laser cameras enables seam tracking and adoptive modification of welding parameters. A constant fill is achieved regardless of the gap tolerances. Friction Stir Welding has been introduced to the market as a reliable and fast joining technology. The advantages of high welding speeds and the elimination of arc light, fumes and liquefaction in the welding spot lead to economical realisation of heavy-duty gantry systems. FSW robots offer a high flexibility with regard to welding of curved parts, and can be equipped with laser cameras for exact joint tracking.