• Title/Summary/Keyword: alumina particle

Search Result 298, Processing Time 0.025 seconds

The Rehydration Properties of Amorphous Alumina Powder in Low Water/Alumina Ratio (낮은물/알루미나 비에서 비정질 알루미나 분말의 수화특성)

  • 박병기;서정권;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1085-1093
    • /
    • 1998
  • Amorphous alumina powder prepared by the fast calcination of aluminum trihydroxide(Al(OH)3 gibbsite) for 0.5 second at 580$^{\circ}C$ was investigated rehydration propeties. Phase composition crystal size and mor-phology surface area pore volume and pore size distribution of pesudo-boehmite and bayerite crystals changed with temperature time water/alumina ratio and particle size when amorphous alumina rehydrated with water. Phase compositions were examined with XRD and DTA and crystal sized morphologies were investigaed with SEM and TEM. Also rehydration properties of amorphous alumina were in-vestigated by measuring the surface area pore volume and pore size distribution.

  • PDF

A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina (표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particles in Automobile Chassis System -PART II: The Influence of Dust Particle Inflow on Wear Characteristics of Rubber-Seal- (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-씨일 부품의 마멸특성 -PART II: 먼지유입에 따른 고무-씨일의 마멸특성-)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.261-264
    • /
    • 2009
  • Environmental factors affect parts of the automobile. When dust particles are embedded, specially, friction and wear of the rubber-seal in automobile chassis system are increased. Increase in friction and wear leads to weakness of component and reduction of mechanical life. In this study, the wear characteristics of rubber-seal for inflow of dust particles are investigated. Silica($SiO_2$) and alumina($Al_2O_3$) particles are used as a dust particle because these particles are main elements of dust particles. The sliding wear tester are used for investigate the wear characteristics of rubber-seal. If the single dust particle($SiO_2$) is embedded in the rubber-seal component, the influence of dust particle size is more than that of inflow rate on the wear characteristics of rubber-seal. If the mixed dust particles are embedded in the rubber-seal component, the wear rate is increased as the rate of alumina that has a bigger hardness is increased. If the mixed dust particles that have different hardness are embedded in the rubber-seal component, the influence of particle size is more than that of particle hardness.

Effects of particle size of Alumina Trihydrate on Dielectric Properties of EPDM (EPDM rubber의 절연특성에 대한 수산화알미늄 입자크기의 영향)

  • Lee, Chul-Ho;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1210-1212
    • /
    • 1997
  • This study describes the influence of the size of the median particles of alumina trihydrated(ATH) filler on the tracking resistance, tensile properties, dielectric properties and water immersion properties of EPDM rubber. A fixed 100pph concentration of the filler of A TH was used for all particle sizes from 0.7 to $20{\mu}m$. It is shown that tracking and erosion resistance decrease with increasing particle size, whereas tensile properties and dielectric properties are improved with increasing particle size of ATH.

  • PDF

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.548-556
    • /
    • 2016
  • Recently, porous alumina-based ceramics have been extensively applied in the semi-conductor and display industries, because of their high mechanical strength, high chemical resistance, and high thermal resistance. However, the high electrical resistance of alumina-based ceramics has a negative effect in many applications due to the generation of static electricity. The low electrical resistance and high air permeability are key aspects in using porous alumina-based ceramics as vacuum chucks in the semi-conductor industry. In this study, we tailored the pore structure of porous alumina-based ceramics by adjusting the mixing ratio of the starting alumina, which has different particle sizes. And the electrical resistance was controlled by using chemical additives. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimetry, capillary flow porosimetry, a universal testing machine, X-ray diffraction, and a high-resistance meter.

Effect of $\alpha-Al_2O_3$ Seeds and Alumina Sol on $\alpha$-Alumina Powder Derived from $\gamma-Al_2O_3$ ($\gamma$-알루미나부터 $\alpha$-알루미나 분말 제조에 있어 Seeding과 알루미나 졸이 미치는 영향)

  • 임경란;장진욱;임창섭;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.482-488
    • /
    • 1995
  • The phase transformation temperature from $\theta$- to $\alpha$-alumina was lowered from 1214$^{\circ}C$ to 114$0^{\circ}C$ in DSC by treating ${\gamma}$-alumina obtained by calcination of boehmite at $700^{\circ}C$ for 2hrswith $\alpha$-Al2O3 seeds (d50=0.36${\mu}{\textrm}{m}$) and 3wt% of the alumina sol. $\alpha$-Al2O3 seeds seemed to lower to the transformation temperature and the alumina sol suppressed the high temperature agglormeration. The effect was increased as the amount of the sol was increased, which was supported by TEM and particle size distribution. For an example, spherical ${\gamma}$-alumina powder with d50=0.54${\mu}{\textrm}{m}$ was prepared by treating the ${\gamma}$-alumina with 9 wt% of the alumina sol and 3wt% of the $\alpha$-Al2O3. It sintered to 99% of the theoretical density at 150$0^{\circ}C$ for 2hrs. and it had relatively homogeneous microstructure with 2~3${\mu}{\textrm}{m}$ sized grains.

  • PDF

Statistical Analysis of Synthesis of Gamma-alumina (γ-Al2O3) Nanoparticles Using Reverse Micelles (역미셀을 이용한 감마-알루미나 나노입자 합성에 대한 통계적 분석)

  • Lee, Kil Woo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.351-354
    • /
    • 2017
  • An experimental design method was used to optimize the synthesis of gamma-alumina with a superior thermal stability using the reverse micelle method. First, twelve experimental conditions were derived by using the mixture design method to optimize conditions for the ratio of surfactant, water and oil, which are main factors in the synthesis process. When the particles synthesized by reverse micelle method were calcined at $900^{\circ}C$ under the designed condition, they all had gamma-alumina crystal structure although there were differences in particle sizes. The coefficient of determination of the second-order regression model using the derived experimental results was 93.68% and the P-value was 0.002. The synthesis conditions forgamma-alumina with various particle sizes were presented using surface and contour lines. As a result, it was calculated that the smallest particle size of about 2.8 nm was synthesized when the ratio of surfactant/water/oil was 0.3450/0.0729/0.5821.

Adsorption of Colloidal Silica Particles on a Glass Substrate

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1011-1016
    • /
    • 2002
  • Colloidal particles of silica (100 nm in size) were electrostatically dispersed and adsorbed on a glass substrate coated with silica sol or alumina sol. Stability of the suspensions and microstructure of the adsorbed particle layers were discussed in terms of total potential energies between the particles and the substrate. Well-dispersed suspension resulted in a layer with densely packed and regularly arranged particles, whereas less stable suspension resulted in a porous layer with loosely packed and irregularly arranged particles. Despite repulsive interactions between the particles and the substrate coated with silica sol, the observed adsorption can be attributed to chemical bonds formed at the interface between the particle and silica sol. In contrast, the adsorption of the particles on the substrate coated with alumina sol formed a layer with strongly adhered and densely packed particles, due to large attractive interactions between the particles and alumina sol.