• Title/Summary/Keyword: alumina ceramic

Search Result 882, Processing Time 0.027 seconds

Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process (겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가)

  • Chung, J.K.;Oh, C.Y.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size (용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과)

  • Lee, Deuk-Yong;Jang, Ju-Woong;Kim, Dae-Joon;Park, Il-Seok;Lee, Jun-Kwang;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.799-805
    • /
    • 2001
  • Two commercial alumina powders having different particle size of $0.5{\mu}m$ and 3${\mu}$m were presintered at 1120$^{\circ}$C for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}$C for up to 4h to obtain the densified glass-alumina composites. The effect of alumina particle size on packing factor, microstructure, wetting, porosity and pore size, and mechanical properties of the composite was investigated. The optimum mechanical properties and compaction behavior were observed for the 3${\mu}$m alumina particle dispersed composite. The 3${\mu}$m alumina particle size and distribution for he preform were within 0.1 to 48${\mu}$m and bimodal and random orientation. The strength and the fracture toughness of the composite having 3${\mu}$m alumina particles were 519MPa and $4.5MPa{\cdot}m^{1/2}$, respectively.

  • PDF

Nanostructured Bulk Ceramics (Part I)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.225-228
    • /
    • 2009
  • The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

Characteristic of alumina-based microfiltration ceramic membrane

  • Hyunsoo, Kim;Oyunbileg, Purev;Eunji, Myung;Kanghee, Cho;Nagchoul, Choi
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This work addresses the development of microfiltration ceramic membrane from alumina using extrusion method. The membranes were sintered at different temperatures ranging between 1000 and 1300℃. The alumina was characterized with thermogravimetric analysis, particle size distribution, X-ray diffraction, Fourier transform infrared spectrometer and scanning electron microscope analysis. Subsequently, the effect of sintering temperature on the membrane properties such as porosity, flexural strength, and pure water permeability was investigated and optimized for the sintering temperature. It is observed that with increasing sintering temperature, the porosity of the membranes decreases and the flexural strength, and pure water permeability of the membranes increase. The uncoated and coated membranes were compared at constant flux mode of filtration. Under the turbidity solution recirculation alone at 100 NTU, trans-membrane pressure (TMP) of uncoated membrane remained constant when the filtration flux was below 121 Lm-2 h -1 , while the coated membrane was 111 Lm-2 h -1 . Although suction pressure increased more rapidly at higher turbidity, coated membrane filtration showed better removal efficiency of the turbidity.

Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말의 입성장 거동에 미치는 Salt의 영향)

  • Kim, Bo Yeon;Lee, Yoon Joo;Shin, Dong-geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Choi, Duck Kyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.603-608
    • /
    • 2015
  • Alumina powder have been expanded its application in industry and required to control its morphology such as powder size and aspect ratio of single particle. It can be synthesized by molten - salt method which is possible to obtain various shapes of ceramic particles by controlling the growth direction because each crystal face has different growth rate. In this study, various combinations of salts such as NaCl, $Na_2SO_4$, $Na_3PO_4$ and their mixture were used for control the growth of plate like alumina particle from the initial stage of synthesis because salt having different ionic strength can control the growth direction of ceramic particle under its melting condition around $800{\sim}900^{\circ}C$, and growth behavior of plate-like alumina particle with different reaction conditions such as temperature and concentration on the crystal size and shape was studied.