• 제목/요약/키워드: alumina cement

검색결과 84건 처리시간 0.034초

시멘트 몰탈의 방수성능에 미치는 제반 영향인자에 관한 연구 (A Study on Various Effecting Factors on Water Proofing Properties of Cement Mortar)

  • 신도철;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.100-105
    • /
    • 1995
  • The aim of this study is to developed water proofing properties of cement mortar this study the effect of mix proportion on the basic characteristics of cement mortar was investigated. Also water absorption and permeability properties of mortar using several admixtures were tested. from this results, Physical properties of mortar is improved by using the sand witch has a broad particle size distribution. Also the sililca alumina powder is effective for decreasing the water permeability of mortar and zinc stearate is in creasing the water repellence property.

  • PDF

Zirconia ceramic의 표면처리 방법이 레진시멘트의 결합강도에 미치는 영향 (EFFECT OF SURFACE TREATMENTS OF ZIRCONIA CERAMIC ON THE BOND STRENGTH OF RESIN CEMENTS)

  • 김창훈;전영찬;정창모;임장섭
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.386-396
    • /
    • 2004
  • Statement of problem: It is not clear how to make a stable bonding between zirconia ceramic and resin cement. And the study about surface treatment of zirconia ceramic or bonding resin cement are not enough. Purpose: To measure and compare the shear bond strength of some resin cements on zirconia ceramic after different surface treatments. Material and method: 48 ceramic discs were made of 3 ceramic materials, zirconia ceramics (Zi-Ceram), heat-pressed ceramics (IPS Empress 2) and slip cast alumina ceramics (In-Ceram). According to the surface treatments of ceramic specimens and resin cements, specimens were classified into 6 groups and each group was composed of 8 specimens. For the surface treatment of Zi-Ceram group (test group), sandblasting and diamond bur preparation were applied and Superbond C&B and Panavia F were bonded respectively. For IPS Empress 2 group (control group), Variolink II was bonded after sandblasting, acid etching, silanization and for In-Ceram ALUMINA group (control group), Panavia F was bonded after sandblasting. After storing specimens in distilled water for 24 hours, the shear bond strength was measured by the universal testing machine. Results and conclusion: 1. Zi-Ceram group with Superbond C&B cement showed higher bond strength than with Panavia F cement regardless to the surface treatments (p<0.05). 2. In Zi-Ceram group with Superbond C&B cement, sandblasting treatment group (12.1MPa) showed higher bond strength than diamond bur treatment group (7.7MPa) (p<0.05). In Zi-Ceram group with Panavia F cement, there were no significant differences in the bond strength according to the surface treatments (p>0.05). 3. Zi-Ceram group with sandblasting and Superbond C&B cement (12.1MPa) showed the highest bond strength. The bond strength of this group was not significantly different from In-Ceram ALUMINA group (10.4MPa) (p>0.05) and lower than IPS Empress 2 group (15.9MPa) (p<0.05).

시멘트 혼화재로서 제지슬러지 소각재의 재활용 특성 (A Study on the Reusability of Incinerated Paper Mill Sludge Ash as Cement Additive)

  • 주소영;연익준;이민희;박준규;김광렬
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.34-41
    • /
    • 2003
  • The purpose of this study is to examine the effect of stabilization disposal and recycling on incinerated paper mill sludge ash as cement additives. It was investigated chemical(pH, ICP, TGA XRD) and physical(PDA, SEM) characteristics of the incineration ash. And the pozzolanic characteristics of incineration ash was applied to cement as additive to increase the compressive strength. The results were that the pH characteristic of incineration ash was strong alkalinity, the content of silica and alumina as a pozzolanic material was 50.97%, and the average particle size was $5.03{\mu}m$ respectively. When the ash contents as cement additive were varied in 0~15%(wt) of cement weight to explore the effect of the compressive strength on the solidified cement mortar, the proper amount of the incineration ash substituted was about 5~l0%(wt). Therefore we found that using the incineration ash as cement additive obtains the recycling of waste material, the stabilization disposal, the reduction of waste disposal expense, and the protection of environmental problem, too.

MDF 시멘트 복합재료의 휨강도와 수분민강성에 미치는 수용성 폴리머의 영향 (The Effect of Water Soluble Polymer on the Flexural Strength and Moisture Sensitivity in MDF Cement Composites)

  • 김태현;최상흘
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.298-304
    • /
    • 1992
  • Flexural strength, microstructure, hydration reaction and moisture sensitivity in macro defect-free (MDF) cement, which basically prepared of high alumina cement (HAC) and hydroxypropyl methylcellulose (HPMC) and polyvinylalcohol (PVA) as water soluble polymer were investigated. Cement composites based on HAC-PVA system were improved in flexural strength than that of HAC-HPMC system especially, the strength of specimens added to 10 wt% of polyvinylalcohol was 160 MPa. These improvements of flexural strength were attributed to not only the effect of water soluble polymer in elimination of macropores (above 100 $\mu\textrm{m}$) and cement grain bridging, but the effect of unhydrate cement as an aggregate. Moisture sensitivity and flexural strength in wet condition of MDF cement composites immersed in water at 80$^{\circ}C$ for 3 days were decreased.

  • PDF

알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성 (Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature)

  • 김원기;김홍주;이승헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

보수 모르타르용 고성능 유동화제의 사용 적합성에 관한 실험적 연구 (A Study on the Experimental Study on Use Proper of Superplasticizer for Repair Mortar)

  • 김영삼;송태협;이문환;이세현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.297-300
    • /
    • 2006
  • Recently, To extend building's life, the use amount of repair mortar has been rapidly increased and naphthalenesulfonic and melanminesulfonic, polycarboxylic superplasticizer etc. are used for repair mortar in large numbers of construction site for efficient work. In this study, it was going to examine the use proper of superplasticizer for repair mortar through the hydrate setting time test and flow test with the mortar combination which replaced by alumina cement and added superplasticizer. As a result, the fluidity of the mortar replaced by alumina cement(10%) and added superplasticizer was dropped down and setting time was shortened. Especially this appearance was more increased on the mortar combination added ploycarboxylic and melanminesulfonic superplasticizer than naphthalensulfunic superplasticizer.

  • PDF

해수에 노출된 칼슘 알루미나계 그라우트의 기계적 특성 모니터링 (Monitoring of calcium aluminate grout exposed to sea water environment)

  • 손다솜;박지윤;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.183-184
    • /
    • 2023
  • Considering the actual marine environment construction, this paper monitors the mechanical properties (Flexural, Compressive strength) by exposing alumina cement to seawater. As a result of the experiment, it was confirmed that the strength decreases by about -25% when curing in seawater, but the target strength of the product is met, so it is believed that exposure to the actual marine environment will not be significantly affected.

  • PDF

저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가 (Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature)

  • 박정훈;기경국
    • 한국건축시공학회지
    • /
    • 제17권5호
    • /
    • pp.419-427
    • /
    • 2017
  • 동절기에 콘크리트를 시공할 경우 초기동해와 강도발현이 지연되는 문제가 있으며, 이를 방지하기 위해서는 콘크리트가 동결하기 이전에 시멘트의 수화반응이 일정수준 이하 진행되는 것이 중요하다. 이에 본 연구는 저온에서도 수화열이 높게 발생되는 $Al_2O_3$성분이 함량이 높은 CSA, 알루미나시멘트를 OPC에 치환하여 물성평가를 수행하였다. 그 결과 CSA, 알루미나시멘트를 사용하여 $-5^{\circ}C$의 저온환경에서 초기에 수화반응이 빠르게 진행되며, 급결현상 및 유동성저하현상이 발생되었고, 석고를 사용하여 응결시간을 지연하며 유동성을 확보하여 작업성을 개선하였다. 또한 단열양생공법을 적용하여 모르타르의 동결시간을 지연하였으며 수축보상효과를 증진시켰고 3일, 7일 강도가 증진되었다. 따라서 본 연구 결과 저온환경에서 CSA, 알루미나시멘트 및 석고를 사용하여 조기에 강도발현 증진효과가 우수하였으며, 석고 및 단열양생공법을 적용하여 작업성, 동결저항성, 조기강도 발현 성능이 개선되어 초기동해를 방지하는데 효과가 있을 것으로 판단된다.

치과 보철용 크라운에 잔존하는 임시 시멘트의 용해액의 개발 (Preparation of Chemical Solution for the Provisional Cement Remnant Cleaning in Dental Crown)

  • 이용현;김병진;이광래
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.12-15
    • /
    • 2017
  • It is important in dentistry that the provisional cement should be cleaned thoroughly from the crown before definitive cementation. The provisional cement has been removed by physical means such as curette, scaler, pumice, or sand-blasting with alumina particles, which is time-consuming, irritating, tedious, even causing crack. To avoid such troubles occurring through such physical cleaning means, the chemical solutions for dissolving the provisional cement remaining in dental crown were prepared, and solubilizing power of the solutions was measured and compared. The solution composed of MEA, NaOH, chloride chemicals ($CHCl_3$, $CCl_4$, $CH_2Cl_2$), surfactants (Igepal, Tween20), chelating agent (EDTA), and Ethyl cellosolve was most effective for dissolving the provisional cement.