• Title/Summary/Keyword: alumina N

Search Result 323, Processing Time 0.025 seconds

The Evaluation of Mechanical Properties for Alumina Ceramics (알루미나 세라믹스의 기계적 특성 평가)

  • 임헌진;조덕호;김무경;한상미;이와사미키오
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.339-347
    • /
    • 1996
  • Mechanical properties(flexural strength hardness fracture toughness) of alumina ceramics were evaluated. Alumina products of four companies were selected and three of those were made in Korea and one of those was made in Japan. The large differences according to manufacturing companies had resulted from flexural strength and weibull modulus which had a wide ranges of 300 to 400 MPa and 5 to 15 respectively. Critical indenstation load which could be neglected the effect of elastic recovery was about 9.8N and Vickers' hardness were about 15 GPa. Fracture toughnesses were evaluated by IF and ISB method. It was more preferable to the average at one indentation load that fracture toughness were obtained from the slope of the relationship between indentation load and crack length in IF method and between indentation load and fracture load in ISB method and fracture toughness was about 4 MPa·m1/2.

  • PDF

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

Separation of Alcohol/water Mixtures with Surface-modified Alumina Membrane in Vapor Permeation (표면개질 알루미나막의 증기투과에 의한 알코올의 분리)

  • 이상인;오한기;이광래
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.121-129
    • /
    • 2000
  • The membrane requires both high in selectivity and flux. However, the permselective membrane has low flux. In this study, the porous alumina membrane was coated with silane coupling agent in order to enhance the flux with proper selectivity. The contact angle of water to the surface-modified alumina membrane was greater than 90$^{\circ}$, which indicated the high hydrophobicity. The modified membrane was tested in vapor permeation for the concentration of aqueous ethanol, isopropanol, and n-butanol. With the increase of ethanol, isopropanol, butanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol, isopropanol, butanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation tate of surface-modified alumina membrane was 20~1000 times greater than that of a polymer membranes.

  • PDF

Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material (나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Effect of Phase Stabilizers on the Phase Formation and Sintering Density of $Na^+$-Beta-Alumina Solid Electrolyte (상 안정화제가 $Na^+$-Beta-Alumina 고체 전해질의 상 형성 및 소결밀도에 미치는 영향)

  • Lee, Ki-Moon;Lee, Sung-Tae;Lee, Dae-Han;Lee, Sang-Min;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.534-538
    • /
    • 2012
  • $Na^+$-beta-alumina solid electrolyte was synthesized by solid state reaction using $Li_2O$ and MgO as a phase stabilizer, and the effect of stabilizers on the phase formation and sintering density was investigated. In order to determine the phase fraction according to the synthesizing temperature, the molar ratio of [$Na_2O$] : [$Al_2O_3$] was fixed at 1 : 5, and calcination was conducted at temperatures between $1200{\sim}1500^{\circ}C$ for 2 h. In the $Li_2O$-$Na_2O$-$Al_2O_3$ ternary system, ${\beta}^{{\prime}{\prime}}$-alumina phase fraction considerably increased by the secondary phase transition at $1500^{\circ}C$, whereas it maintained similarly in the MgO-$Na_2O$-$Al_2O_3$ system. Additionally, the disc-type specimens of $Na^+$-beta-alumina were sintered at the temperature between $1550{\sim}1650^{\circ}C$ for 30 min, and relative sintering densities, phase changes, and microstructures were analyzed. In case of $Li_2O$-stabilized $Na^+$-beta-alumina, ${\beta}^{{\prime}{\prime}}$-phase fraction and relative density of specimen sintered at $1600^{\circ}C$ were 94.7% and 98%, respectively. Relative density of MgO-stabilized $Na^+$-beta-alumina increased with a rise in sintering temperature.

Preparation of Aluminum Nitride Powders and Whiskers Using Aluminum(III) Salts as a Precursor

  • Jung, Woo-Sik;Chae, Seen-Ae
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.720-724
    • /
    • 2003
  • Aluminum nitride (AlN) powders were synthesized by using a mixture of an aluminum nitrate or sulfate salt and carbon (mole ratio of $Al^{3+}$ to carbon=L : 30). The AlN was obtained by calcining the mixture under a flow of nitrogen in the temperature range 1100-1$600^{\circ}C$ and then burning out the residual carbon. The process of conversion of the salt to AlN was monitored by XRD and $^{27}$ Al magic-angle spinning (MAS) NMR spectroscopy. The salt decomposed to ${\gamma}$-alumina and then converted to AlN without phase transition from ${\gamma}$-to-$\alpha$-alumina. $^{27}$ Al MAS NMR spectroscopy shows that the formation of AlN commenced at 110$0^{\circ}C$. AlN powders obtained from the sulfate salt were superior to those from the nitrate salt in terms of homogeneity and crystallinity. A very small amount of AlN whiskers was obtained by calcining a mixture of an aluminum sulfate salt and carbon at 115$0^{\circ}C$ for 40 h, and the growth of the whiskers is well explained by the particle-to-particle self-assembly mechanism.

Change of Particle Size of Spherical Alumina Powders Prepared by Emulsion Method in the Region of Low Hydroxypropylcellulose Concentration (저농도의 HPC 영역에서 에멀젼법에 의해 제조된 구형 알루미나 분말의 입자 크기 변화)

  • Ahn, C.W.;Park, K.S.;Yoo, H.S.;Cho, K.;Lee, Y.W.;Yang, M.S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Spherical alumina gel powders were produced by hydrolysis of aluminum sec-butoxide (Al(sec-OC4H9)3) in a n-octanol/acetonitrile mixed solvent. The enlargement of particle size was induced by increasing HPC (hydroypropylcellulose) concentration (0.005, 0.1, and 0.05 g/ι) and emulsion-state aging time (10 min and 360 min). Mean particle sizes of dried alumina gel powders increased from 1.4 ${\mu}{\textrm}{m}$ to 3.5${\mu}{\textrm}{m}$ at 10-min emulsion-state aging time and from 1.9${\mu}{\textrm}{m}$ to 4.1${\mu}{\textrm}{m}$ at 360-min emulsion-state aging time as HPC concentration increased from 0.005 g/ι to 0.05 g/ι. At the same HPC concentration, particle size of dried alumina gel powder increased with increasing of emulsion-state aging time from 10 min to 360 min. The increase in the average particle size of dried alumina gel powder with increase in HPC concentration was interpreted as the enlargement of particles from alkoxide emulsions unprotected by HPC. The produced dried gel powder calcined at 115$0^{\circ}C$ for one hour transformed to $\alpha$-alumina.

  • PDF

Study for Transport and Separation Mechanisms of $CO_2/N_2$ Mixture on Organic Templating Silica/Alumina Composite Membrane by Using Generalized Maxwell Stefan model (Generalized Maxwell Stefan 모형을 이용한 유기 템플레이팅 실리카/알루미나 복합막의 $CO_2/N_2$ 혼합물의 투과/분리 기구 해석)

  • Lee Chang-Ha;Moon Jong-Ho;Kim Min-Bae;Kang Byung-Sub;Hyun Sang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.43-51
    • /
    • 2004
  • In this study, gas permeation and separation characteristics of $CO_2$ and $N_2$ on nano-porous TPABr(Tetrapropylammoniumbromide) templating silica/alumina composite membrane were studied by using GMS (Generalized Maxwell Stefan) model. Since the transport mechanisms of meso-porous alumina support are Knudsen diffusion and viscous diffusion(or poiseulle flow), they can be identified by DGM (dusty gas model). The transport mechanism of TPABr templating silica layer, which would contribute mainly to the separation of $N_2/CO_2$ mixture, showed surface diffusion rather than pore diffusion. Therefore, the oermeationjseparation mechanisms in multi-component suface diffusion were successfully analyzed by the GMS model. In the separation of $N_2/CO_2$ mixture using the composite membrane, $CO_2$, the strongadsorbate, was permeated through the membrane more than Na due to the pore-blocking phenomena of $CO_2$ by adsorption isotherm and solace diffusion.

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF