• 제목/요약/키워드: alternative fuel

검색결과 963건 처리시간 0.024초

3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발 (A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine)

  • 심주현;고춘식;이상민;이옥재;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

  • M. Lovecky;J. Zavorka;J. Jirickova;Z. Ondracek;R. Skoda
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2288-2297
    • /
    • 2023
  • Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.

에탄올 및 수소농후가스 혼합연료 기관의 운전영역에 따른 성능 및 배기 특성 (The Performance and Emission Characteristics on Operating Condition for the SI Engine Fuel with Gasoline-Ethanol and Hydrogen Enriched Gas)

  • 박철웅;김창기;최영;오승묵;임기훈
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.23-30
    • /
    • 2010
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The results obtained from experiments have shown that specific fuel consumption has increased by increasing ethanol amount in the blend whereas decreased by the use of hydrogen-enriched gas. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션 (Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine)

  • 최인수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

메탄올(M85) 엔진의 냉시동성 개선을 위한 실험적 연구 (Experimental study on the improvement of cold startability of methanol (M85) fueled engine)

  • 이시훈;신영기;황상순
    • 오토저널
    • /
    • 제14권3호
    • /
    • pp.71-79
    • /
    • 1992
  • Recently, air pollution and energy security problems have necessitated the development of alternative fuel vehicles. As an alternative fuel vehicle FFV(Flexible Fuel Vehicle) which can be operated by and mixture between gasoline and M85(methanol 85% and gasoline 15% by vol. percent) has been drawing great attention. But poor cold startability of high methanol- content fuel which is characteristic of lower fuel volatility and higher latent heat of vaporization than gasoline is one of the major problems to be solved for the development of FFV. In this paper, important factors influencing cold startability of general S.I. engines are described. And, so-me cost-effective and practical methods were investigated in view of the optimization of fuel-ing parameters and ignition system for M85 fuel. The test results showed good startability up to (-22)-(-23).deg.C.

  • PDF

폐식용유를 연료로 하는 디젤 기관(機關)의 배기(排氣) 배출물 생성(生成)에 미치는 연료(燃料) 성상(性狀)의 영향(影響) (The Affect of Fuel Properties on Exhaust Emissions Formation of Used Vegetable Oil in a Diesel Engine)

  • 오영택
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.162-175
    • /
    • 1995
  • Exhaust emissions in diesel engine are affected by fuel properties, but the reason for this is not clear. Especially, the recent strong interest in using low-grade fuel such as used vegetable oil as alternative diesel fuel demands extensive investigation in order to clarify the exhaust emissions. The purpose of this study is to evaluate the feasibility of a used vegetable oil as an alternative fuel in a diesel engine in terms of exhaust emissions. The emission concentration of used vegetable oil such as formaldehyde and acrolein is two times than that of diesel fuel. However, since that of alcohol is ten times than that of used vegetable oil and that concentration is very low, it is not a problem for human health.

  • PDF

수소가스 부취제가 연료전지의 성능에 미치는 영향 연구 (A Study on Influence of Fuel Cell Performance by Hydrogen Odorant)

  • 한상원;오석환;김영규;이승훈;채재우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.491-494
    • /
    • 2008
  • The hydrogen fuel and fuel cell which have high energy efficiency and low pollutant emission are getting interest as an alternative energies due to the fossil fuel exhaust, green house effect and atmospheric pollutant problems. The hydrogen gas is very effective as an alternative energy. But, if it is leaked into the air it forms the mixed gas with the air then the danger of the explosion is risen up. So, the secure the safety is mostly important. In this research, to detect the leakage of the hydrogen rapidly, added the odorant materials which don't include the sulfur component into the hydrogen gas and researched on the effect of each odorant on the performance of the fuel cell. As the results, setting the cumulation electric power on the basis and comparing the pure hydrogen, 2,3-Butanedione 5ppm mixed gas 86.1%, 5-Ethylidene-2-Norbornene 17ppm mixed gas 88.2%, Isovaleraldehyde 10ppm mixed gas 74.8%, Ethyl Isobutyrate 2.2ppm mixed gas 93.5% of performance was shown.

  • PDF

LPG-DME 혼합연료를 사용하는 전기점화 기관의 성능 및 배기특성에 관한 연구 (Performance and Emissions of a SI Engine Operated with LPG-DME Blended Fuel)

  • 이석환;오승묵;강건용;최원학;차경옥
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.175-182
    • /
    • 2008
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. Performance and emissions characteristics of a LPG engine fuelled by LPG and DME blended fuel were examined. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to pure LPG fuel operation. Exhaust emissions measurements showed that hydrocarbon and NOx were increased with the blended fuel at low engine speed. Engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power and exhaust emissions, the blended fuel within 20% mass content of DME could be used as an alternative fuel for LPG.

LPG/DME 혼합연료를 사용하는 전기점화 기관에서 LPG 성분이 엔진 성능 및 배기특성에 미치는 영향 (The Effect of N-butane and Propane on Performance and Emissions of a SI Engine Operated with LPG/DME Blended Fuel)

  • 이석환;오승묵;최영;강건용;최원학;차경옥
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.35-42
    • /
    • 2009
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. The effect of n-butane and propane on performance and emissions of a SI engine fuelled by LPG/DME blended fuel were examined. Stable engine operation was achieved for a wide range of engine loads with propane containing LPG/DME blended fuel compare to butane containing LPG/DME blended fuel since octane number of propane was much higher than that of butane. Also, engine output operated with propane containing blended fuel was comparable to pure LPG fuel operation. Engine output power was decreased and break specific fuel consumption (BSFC) was increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power, bsfc, and exhaust emissions, the propane containing LPG/DME blended fuel could be used as an alternative fuel for LPG.