• Title/Summary/Keyword: alternative adsorption

Search Result 106, Processing Time 0.024 seconds

Removal Characteristics of NOx Using a Soil-Biofilter (토양 Bio-Filter를 이용한 질소산화물 제거특성)

  • Cho Ki-Chul;Ko Byeung-Ik;Lee Nae-Hyun;Cho Il-Hyoung
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over $60\%\;and\;48\%$ of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of $423\~451$ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.

A New large-scale Pre-purification for Peroxidase from Plant Cell Cultures (식물세포 배양으로부터 Peroxidase 대량 정제를 위한 전처리 공정 개발)

  • 표상현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.342-345
    • /
    • 2000
  • A novel pre-purification method was developed for producing peroxidase to guarantee high purity and yield from plant cell cultures in large-scale process. This method was a simple and efficient procedure for the isolation and pre-purification of peroxidase from the biomass consisting of active clay treatment followed by cationic exchange chromatography. The use of active clay in the pre-purification process allows for rapid and efficient separation of peroxidase from interfering compounds and dramatically increases yield and purity of crude peroxidase for purification steps compared to alternative processes. This pre-purification process serves to minimize the buffer usage size and complexity of the HPLC operations for peroxidase purification. This process is readily scalable to a pilot plant and eventually to a production environment where mass production of material are expected to be produced.

  • PDF

Formulation of Liquid Choline Alphoscerate as a Solid Dosage Form (액상 콜린알포세레이트의 고형 제제화 연구)

  • Choi, Sung-Up;Cho, Seong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6324-6329
    • /
    • 2013
  • The aim of this study was to prepare and evaluate tablets containing liquid choline alphoscerate, which is capable of being formulated as a solid dosage form by the adsorption of magnesium aluminum silicate. The tablets were prepared with various absorbent to choine alphoscerate ratios. The physical properties and the dissolution rate were investigated. Considering the tabletting and dissolution rate, the formula scontaining 50-75% absorbent were adequate in the tested formulations. The 62.5% absorbent formula showed superior results with the tests of hardness, friability, disintegration time, and the ratio of dissolution area under the curve. Overall, magnesium aluminum silicate can be an alternative additive to a liquid drug.

Membrane fouling control in low pressure membranes: A review on pretreatment techniques for fouling abatement

  • Arhin, Samuel Gyebi;Banadda, Noble;Komakech, Allan John;Kabenge, Isa;Wanyama, Joshua
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 2016
  • Conventional treatment techniques cannot meet the stringent modern water quality regulations emanating from the need to provide high quality drinking water. Therefore, a number of studies have suggested low pressure membrane filtration as a worthwhile alternative. However, a major constraint to the extensive use of this technology in low and middle income countries is the high operating and maintenance costs caused by the inherent predisposition to membrane fouling. Notwithstanding, pretreatment of feed water using techniques such as coagulation, adsorption, oxidation and bio-filtration is believed to control fouling. In this review paper, the existing scientific knowledge on membrane fouling and pretreatment techniques for controlling fouling in low pressure membranes is analyzed with the aim of providing new and valuable insights into such techniques, as well as unveiling crucial issues noteworthy for further studies. Among the techniques reviewed, coagulation was observed to be the most cost-effective and will remain the most dominant in the coming years. Although oxidants and magnetic ion exchange resins can also control fouling, the propensity of oxidants to form health treating precursors and the high economic implications of magnetic ion exchange resins will hinder their adoption in developing countries.

A Study of $SO_2$ Adsorption Characteristics by Adsorbents in a Fixed Bed Reactor (고정층 반응기를 이용한 흡착제 종류에 따른 $SO_2$ 흡착특성에 관한 연구)

  • 조기철;홍성창;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 1999
  • This study evaluated the availability as an alternative adsorbent which is cheaper and more efficient than CuO/${\gamma}$-$Al_2O_3$ which have been studing vigorously to remove $SO_2$. Five adsorbents (CuO/${\gamma}$-$Al_2O_3$, Iron ore, Slag, LD slag, $Fe_2O_3$) was employed in a fixed bed reactor. $SO_2$ breakthrough curves were obtained as a function of temperature, initial gas velocity and particle size. Saturation capacities calculated by the numerical integration of breakthrough curves of $SO_2$ increased with increasing reaction temperature. $SO_2$ breakthrough curve equation of $Fe_2O_3$ for this system can be expressed as Kr=3,914,000 exp(-37,329.86/RT). By means of the breakthrough curve, the influence of bed height on breakthrough time was also estimated.

  • PDF

임신부 뇨로부터 정제된 인간 상피세포 증식 인자 유사체의 in vitro bioassay 및 특성

  • Park, Se-Cheol;Jun, Jae-Hyun;Nam, Jung-Hyun;Kwon, Tae-Jong;Ko, In-Young;You, Kwang-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.472-477
    • /
    • 1996
  • Natural human epidermal growth factor (nhEGF) was purified from pregnant human urine by benzoic acid adsorption, DEAE-Sepharose ion exchange, and immunoaffinity chromatography. The purified nhEGF was further separated into four fractions using Bondapak C$_{18}$ HPLC system. Following characterization by Western blot analysis and double immu- nodiffusion, we found that each fraction corresponds to four derivatives of the nhEGF. For biological analysis of nhEGF, we optimized the labeling time and serum concentration for the incorporatioin of 5-bromo-2'-deoxy uridine (BrdU), a non-radioactive alternative for [$^{3}$H]-thymidine uptake, into NIH 3T3 cells. The DNA synthesis of NIH 3T3 cells was gradually increased at the nhEGF concentrations between 0.1 - 10 ng/ml in the Dulbecco's Modified Eagles Medium (DMEM) containing 0.2% Fetal calf serum (FCS). When we assayed the biological activity of four fractions, the activity of the second fraction was superior to that of the others. Based on the results from the HPLC analysis spiked with recombinant human epidermal growth factor (rhEGF) and amino acid sequencing, we concluded that the second fraction was nhEGF and the other three fractions were the derivatives of nhEGF. In addition, the proportion of nhEGF was approximately 46% is compared with that of the other three derivatives.

  • PDF

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

The Removal of Styrene using Immobilized Microorganisms in Hydrogel Beads (미생물 고정화 복합고분자담체를 이용한 Styrene 제거)

  • Song, Ji-Hyeon;Ham, Eun-Yi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.648-653
    • /
    • 2006
  • As an alternative for the traditional materials packed in biofilters treating gaseous VOCs, a novel packing material has been developed and tested. In the packing material(named as Hydrogel Bead, HB), pollutant-degrading microorganisms were immobilized in hydrogel consisted of alginate, polyvinyl alcohol(PVA), and powdered activated carbon. A closed-bottle study showed that the HB rapidly removed gaseous styrene without the losses of adsorption and biodegradation capacity. Biofilter column experiments using the HBs also demonstrated that greater than 95% of removal efficiencies were found at an inlet styrene loading rate of $245g/m^3/hr$, which was higher biofilter performance than other elimination capacity reported earlier. Furthermore, when the inlet styrene concentration increased stepwise, the adsorption played an important role in overall styrene removals. The absorbed styrene was found to be biodegraded in the following low inlet loading condition. Consequently, the new HB material is able to successfully minimize the drawbacks of activated carbon(necessity of regeneration) and biological processes(low removal capacity at dynamic loading conditions), and maximize the overall performance of biofilter systems treating VOCs.

Competitive Extraction of Chlorinated Solvents by Headspace SPME GC/FID (Headspace SPME GC/FID를 이용한 Chlorinated Solvents의 경쟁적 추출효과에 관한 연구)

  • An, Sangwoo;Kim, Youngju;Chun, Sukyoung;Lee, Sijin;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.61-67
    • /
    • 2010
  • In this study, Solid-phase microextraction (SPME) with GC/FID was studied as a possible alternative to liquid-liquid extraction for the analysis of chlorinated solvents (PCE and TCE) and these by-products (cis-DCE, VC, and Ethylene). Experimental parameters affecting the SPME process (such as kind of fibers, adsorption time, desorption time, volume ratio of sample to headspace, salt addition, and magnetic stirring) were optimized. Experimental parameters such as CAR/PDMS, adsorption time of 20 min, desorption time of 5 min at $250^{\circ}C$, headspace volume of 50mL, sodium chloride (NaCl) concentration of 25% combined with magnetic stirring were selected in optimal experimental conditions for analysis of chlorinated solvents and these by-products. The general affinity of analytes to CAR/PDMS fiber was high in the order PCE>TCE>cis-DCE>VC>Ethylene. The linearity of $R^2$ for chlorinated solvents and these by-products was from 0.912 to 0.999 when analyte concentrations range from $10{\mu}g/L$ to $500{\mu}g/L$, respectively. The relative standard deviation (% RSD) were from 2.1% to 3.6% for concentration of $500{\mu}g/L$ (n=5), respectively. Finally, the limited of detection (LOD) observed in our study for chlorinated solvents and these by-products were from $0.5{\mu}g/L$ to $10{\mu}g/L$, respectively.

Nanoconfinement of Hydrogen and Carbon Dioxide in Palygorskite (팔리고스카이트 내 수소 및 이산화탄소 나노공간한정)

  • Juhyeok Kim;Kideok D. Kwon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • Carbon neutrality requires carbon dioxide reduction technology and alternative green energy sources. Palygorskite is a clay mineral with a ribbon structure and possess a large surface area due to the nanoscale pore size. The clay mineral has been proposed as a potential material to capture carbon dioxide (CO2) and possibly to store eco-friendly hydrogen gas (H2). We report our preliminary results of grand canonical Monte Carlo (GCMC) simulations that investigated the adsorption isotherms and mechanisms of CO2 and H2 into palygorskite nanopores at room temperature. As the chemical potential of gas increased, the adsorbed amount of CO2 or H2 within the palygorskite nanopores increased. Compared to CO2, injection of H2 into palygorskite required higher energy. The mean squared displacement within palygorskite nanopores was much higher for H2 than for CO2, which is consistent with experiments. Our simulations found that CO2 molecules were arranged in a row in the nanopores, while H2 molecules showed highly disordered arrangement. This simulation method is promising for finding Earth materials suitable for CO2 capture and H2 storage and also expected to contribute to fundamental understanding of fluid-mineral interactions in the geological underground.