• Title/Summary/Keyword: altering distance

Search Result 24, Processing Time 0.023 seconds

보철 수복시 치간 유두에 대한 고려 사항

  • Lee, Sung-Bok;Lee, Seung-Gyu
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.10 no.1
    • /
    • pp.30-45
    • /
    • 2001
  • In recent years, clinicians' and dentists' esthetic demands in dentistry have increased rapidly. The ultimate goal in modern restorative dentistry is to achieve "white" and "pink" esthetics in the esthetically important zones. Therefore, modern esthetic dentistry involves not only the restoration of lost teeth and their associated hard tissues, but increasingly the management and reconstruction of the encasing gingiva with adequate surgical techniques. Interdental space are filled by interdental papilla in the healthy gingiva, preventing plaque deposition and protecting periodontal tissue from infection. This also inhibits impaction of food remnants and whistling through the teeth during speech. These functional aspects are obviously important, but esthetic aspects are important as well. Complete and predictable restoration of lost interdental papillae remains one of the biggest challenges in periodontal reconstructive surgery. One of the most challenging and least predictable problems is the reconstruction of the lost interdental papilla. The interdental papilla, as a structure with minor blood supply, was left more or less untouched by clinicians. Most of the reconstructive techniques to rebuild lost interdental papillae focus on the maxillary anterior region, where esthetic defects appear interproximally as "black triangle". Causes for interdental tissue loss are, for example, commom periodontal diseases, tooth extraction, excessive surgical periodontal treatment, and localized progressive gingiva and periodontal diseases. If an interdental papilla is absent because of a diastema, orthodontic closure is the treatment of choice. "Creeping" papilla formation has been described by closing the interdental space and creating a contact area. In certain cases this formation can also be achieved with appropriate restorative techniques and alteration of the mesial contours of the adjacent teeth. The presence of an interdental papilla depends on the distance between the crest of bone and the interproximal contact point, allowing it to fill interdental spaces with soft tissue by altering the mesial contours of the adjacent teeth and positioning the contact point more apically. The interdental tissue can also be conditioned with the use of provisional crowns prior to the definitive restoration. If all other procedures are contraindicated or fail, prosthetic solutions have to be considered as the last possibility to rebuild lost interdental papillae. Interdental spaces can be filled using pink-colored resin or porcelain, and the use of a removable gingival mask might be the last opportunity to hide severe tissue defects.

  • PDF

Voluntary exercise training improves body weight of leptin-deficient ob/ob mice by altering hepatic stearoyl-CoA desaturase 1 and deleted in breast cancer 1 protein levels

  • Lim, Wonchung;Hwang, Moon-Hyon;Kang, Chounghun;Kim, So Yeon;Cho, Hyeseong
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.54-58
    • /
    • 2021
  • [Purpose] Deleted in breast cancer 1 (DBC1) ablation causes obesity, and stearoyl-CoA desaturase 1 (SCD1) induces the biosynthesis of monounsaturated fatty acids. This study examined whether voluntary wheel running (VWR) alters SCD-1 and DBC1 protein levels in the liver of leptin-deficient ob/ob mice. [Methods] Twenty-five Ob/Ob mice were divided into two groups (ob/ob-Sed and ob/ob-Ex). The expression of DBC1 and SCD1 in the mouse liver was determined using western blotting. [Results] After 10 weeks, VWR significantly reduced body weight without affecting the fatty acid synthase and CD36 protein levels. The average daily running distance was 4.0±1.0 km/day. This improvement was associated with changes in the hepatic SCD1 and DBC1 levels. Hepatic SCD-1 protein levels increased significantly, and DBC1 protein levels decreased in ob/ob-Sed animals. On the other hand, VWR inhibited the obesity-induced increase in SCD1 expression and impaired the obesity-induced decrease in DBC1 expression in the liver of leptin-deficient ob/ob mice. [Conclusion] This is the first study showing that VWR has strong effects on hepatic SCD1 and DBC1 in ob/ob mice, and provides key insights into the effects of exercise on obesity.

A Study on the Maneuverabilities of the M . S . Pusan 404-Tests by a Series of Turning Circles , New Course Keeping and Spiral (부산 404호의 조종성능에 관한 연구)

  • 김민석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 1992
  • Generally a navigator evaluated the maneuverability of his ship by the scale of turning circle which was described only by the largest rudder angle of the port and starboard sides. But to have the sufficient knowledge of his ship's maneuvering characteristics he should consider the data about the new course keeping test, the spiral test, and the turning circle tests in accordance with the rudder angles together. In this paper the author performed the above tests to study the maneuverability of the stern trawler M.S. Pusan 404 which is a training ship of the National Fisheries University of Pusan. The obtained results are summarized as follows: 1. When the rudder angles being 5。, 10。, 20。, 30。, 35。 the advances of the starboard side turning circles were 12.8, 8.2, 4.8, 2.9, 2.7 times as large as the length of the ship, and of the port side turning circles were 13.3, 8.7, 5.4, 3.5, 2.9, time as large as the large as it. Under the same conditions the tactical diameters were 15.1, 9.7, 5.2, 3.1, 2.8 times as large as the length of the ship, for starboard side, and 17.2, 12.4, 6.4, 3.7, 3.2 times as large as it for port side. 2. As the rudder angle being increased the ratio of the advance to the tactical diameter was nearly 1 and her obeying ability was better than that of the small angle. 3. The mean values of the rates of speed reduction during the steady turning motion were 0.96, 0.92, 0.82, 0.71, 0.65 in accordance with the rudder angles. 4. The relative formulas between the distance to the new course y and the altering course x were as follows: When rudder angles being 10。, 20。, 30。, y=52.2222+1.6133x, y=48.750+0.9383x, y=39.250+0.655x respectively. 5. There was little difference of the distance to the new course between rudder angle 20。and 30。, and so it is desirable for a navigator to a navigator to use the small rudder angles unless sudden emergencies. 6. Though her rudder angle being small her course stability was good according to the spiral tests.

  • PDF

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF