• Title/Summary/Keyword: alpha phase

Search Result 1,600, Processing Time 0.036 seconds

Microstructural Analysis of Thermo-Mechanical Processed Ti-6Al-4Fe Alloy (Ti-6Al-4Fe 합금의 가공열처리 미세조직 분석)

  • Choe, Byung Hak;Choi, Won-Youl;Shim, Jong Heon;Park, Chan Hee;Kang, Joo-Hee;Kim, Seung Eon;Hyun, Yong Taek
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.410-416
    • /
    • 2015
  • Microstructural analysis of a (${\alpha}+{\beta}$) Ti alloy was investigated to consider phase transformation in each step of the thermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated with solid solution at $880^{\circ}C$, rolling at $880^{\circ}C$ and annealing at $800^{\circ}C$. In the STQ state, the TAF microstructure was composed of a normal hcp ${\alpha}$ and metastable ${\beta}$ phase. In a rolled state, it was composed of fine B2 precipitates in an ${\alpha}$ phase, which had high Fe segregation and a coherent relationship with the ${\beta}$ matrix. Finally, in the annealing state, the fine B2 precipitates had disappeared in the ${\alpha}$ phase and had gone to the boundary of the ${\alpha}$ and ${\beta}$ phase. On the other hand, in a lower rolling temperature of $704^{\circ}C$, the B2 precipitates were more coarse in both the ${\alpha}$ and the boundary of ${\alpha}$ and ${\beta}$ phase. We concluded that microstructural change affects the mechanical properties of formability including rolling defects and cracks.

Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments (산성 염화물 환경에서 F53 슈퍼 듀플렉스 스테인리스강의 2 상간의 공식 거동 연구)

  • Kim, Soon Tae;Kong, Kyeong Ho;Lee, In Sung;Park, Yong Soo;Lee, Jong Hoon;Kim, Doo Hyun
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • The pitting corrosion behaviors between the constituent phases in F53 super duplex stainless steel (SDSS) in acidified chloride environments were investigated using a critical pitting corrosion temperature test, a potentiodynamic anodic polarization test, and the microstructure analyses through a SEM-EDS and a SAM. As the solution annealing temperature decreased from $1150^{\circ}C$ to $1050^{\circ}C$, the ${\gamma}$-phase fraction increased whereas the ${\alpha}$-phase fraction decreased. The pitting potential and the critical pitting temperature increased with a decrease of solution annealing temperature, thereby increasing the resistance to pitting corrosion. The pitting corrosion of the SDSS was selectively initiated at the ${\alpha}$-phases because the PREN (pitting resistance equivalent number, PREN = %Cr+3.3%Mo+30%N) value of the ${\gamma}$-phase is much larger than that of the ${\alpha}$-phase, irrespective of the solution annealing temperature. The pitting corrosion was finally propagated from the ${\alpha}$-phase to the ${\gamma}$-phase. The decrease of solution annealing temperature enhanced the resistance to pitting corrosion greatly in acidified chloride environments due to a decrease of PREN difference between the ${\gamma}$-phase and the ${\alpha}$-phase, that is, a decrease of $PREN{\gamma}$ by dilution of N in ${\gamma}$-phase with an increase in the ${\gamma}$-phase volume fraction and an increase of $PREN{\alpha}$ by enrichment of Cr and Mo in the ${\alpha}$-phase with a decrease in the ${\alpha}$-phase volume fraction.

High Pressure Binary Phase Equilibria Measurements of α-Tetralol with Carbon Dioxide (이산화탄소와 α-Tetralol과의 2성분계 고압상평형 측정)

  • Byun, Hun-Soo;Kim, Choon-Ho;Hwang, Young-Gi;Kwak, Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • The binary phase equilibrium experiments of carbon dioxide/1,2,3,4 ${\alpha}$-tetrahydro-1-naphthol(${\alpha}$-tetralol) system were conducted to get phase equilibrium and mixture density data at 313.2K, 343.2K and 373.2K and within pressure ranges of 6.0 MPa to 35.0MPa. The phase equilibrium apparatus was type that circulated the vapor and liquid phase, the expended volume measuring system was adopted to microsampling technique for the analysis. The phase equilibrium and mixture density data were obtained for carbon dioxide/${\alpha}$-tetralol system from liquid and vapor phase. The mole fraction of carbon dioxide in liquid phase decreases and the mole fraction of ${\alpha}$-tetralol in vapor phase increases at constant pressure according to increment of temperature, and both the densities of the vapor and liquid phase approach to the mixture critical density as the pressure increases at any temperature. For she thermodynamic analysis, the experimental data were correlated with Peng-Robinson equation in cubic equation of state and compared to theoretical values of carbon dioxide/${\alpha}$-tetralol system. The AAD result was in the range of 1.08%~8.93% in the case of K(1), and was in the range of 45.71%~72.34% in the case of K(2).

  • PDF

Behavior of Nitrogen in the Variation of Heat Treatment Conditions of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 열처리 조건변화에 따른 첨가원소 질소의 거동)

  • Joo, Dong Won;Sung, Jang Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.30-39
    • /
    • 1997
  • After changing the heat treating atmosphere of nitrogen gas, argon gas and vacuum, the nitrogen contents, microstructural changes, hardness and corrosion resistance of 0.25wt.%N alloyed super duplex stainless steel have been investigated in the temperature range from $1050^{\circ}C$ to $1350^{\circ}C$. The nitrogen content showed to be increased up to 0.36wt.% after heat treating the specimen in nitrogen gas at $1200^{\circ}C$, while the decrement of nitrogen content in vacuum atmosphere was shown down to 0.03wt.% at $1350^{\circ}C$. After heat treating in the mixed gas atmosphere of argon and nitrogen at $1250^{\circ}C$, the surface ${\gamma}$ phase existed as ${\alpha}+{\gamma}$ phase increased with increasing nitrogen gas content. The ${\gamma}$ single phase appeared at the surface above $80%N_2$ gas, while the surface ${\alpha}$ single phase was shown below $20%N_2$ gas. When heat treating the specimen in nitrogen gas at $1050^{\circ}C$, the hardness of austenite phases increased above Hv 40 at the surface layer compared to the hardness of the core parts, while decrement of denitriding effect caused to the hardness nearly unchanged between surface and the core parts after heat treating in vacuum atmosphere. The surface ${\gamma}$ single phase specimen showed superior corrosion resistance than the surface ${\alpha}$ single phase specimen. The surface ${\alpha}$ phase existed in the ${\alpha}+{\gamma}$ microstructure showed higher corrosion resistance after heat treating in the nitrogen gas atmosphere than the ${\alpha}$ phase heat treated in the argon gas and vacuum atmosphere.

  • PDF

Measurement of Hydrogenation Characteristics of Pd Film by Using Electrical Resistivity Measurement Technique (전기저항 측정법을 이용한 Pd박막의 수소화 특성 측정)

  • Cho, Young-Sin;Lee, Ho-Jae;Lee, Jong-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • 4-probe resistivity measurement technique was used to study kinetics of hydrogen absorption-desorption on Pd film($520{\AA}$ thick) at room temperature upto 1 bar. Kinetics data are fitted well to 1st order kinetics equation in ${\alpha}$ and ${\alpha}^{\prime}$ phases. In ${\alpha}+{\alpha}^{\prime}$ phase, absorption kinetics was very complicated, but it could be explained partially with nucleation and growth process. Ln(dR/dt) vs. time plot gives rate constant k value(R is resistance of sample, t is time). k value for absorption is $4^{-6}{\times}10^{-4}/sec$ in ${\alpha}$ phase. k is increasing upto $4^{\times}10^{-2}/sec$ as hydrogen pressure increasing in ${\alpha}^{\prime}$ phase. k is proportional to ln(Pop/Peq), where Peq is equilibrium plateau pressure and Pop is the opposing pressure. In contrast to bulk sample k value was decreasing with increasing number of A-D cycling in ${\alpha}^{\prime}$ phase absorption.

  • PDF

Effects of α2/β Volume Fraction on the Superplastic Deformation (2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향)

  • 김지식
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy (2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구)

  • Kim Jeoung Han;Yeom Jong Taek;Park Nho Kwang;Lee Chong Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

DFT Study on the Different Oligomers of Glycerol (n=1-4) in Gas and Aqueous Phases

  • Valadbeigi, Younes;Farrokhpour, Hossein
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.684-690
    • /
    • 2013
  • Since a glycerol molecule has three active sites, two ${\alpha}$ and one ${\beta}$ hydroxyl groups; it undergoes condensation by releasing water molecules to produce linear, nonlinear and heterocyclic oligomers. The Gibbs free energy (G), enthalpy (H) and internal energy (E) of 7 diglycerol, 15 triglycerol and 23 tetraglycerol isomers were calculated at B3LYP level of theory using 6-311++G(d, p) basis set, in both gas and aqueous phases. Linear oligomers, ${\alpha}{\alpha}$-diglycerol, ${\alpha}{\alpha}$, ${\alpha}{\alpha}$-triglycerol and ${\alpha}{\alpha}$, ${\alpha}{\alpha}$, ${\alpha}{\alpha}$-tetraglycerol, were found to be the most stable oligomers in aqueous phase. It was found that the stability of cyclic oligomers decreases as the size of their rings increases. Cyclic oligomers are produced by dehydration of the acyclic ones which is an endothermic reaction while its ${\Delta}G$ is negative. The dehydration reaction is less endothermic in aqueous phase.

Low-temperature/high-strain rate superplasticity of two-phase titanium alloys (2상 타이타늄 합금의 저온/고속 초소성)

  • Part, C.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.76-79
    • /
    • 2009
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of $\alpha/\beta\;\ll\;\alpha/\alpha\;\approx\;\beta/\beta$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

  • PDF

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control (2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상)

  • Park, C.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.