• Title/Summary/Keyword: alpha cellulose

Search Result 227, Processing Time 0.032 seconds

Partial Purification and Characteristics of Amylases from Herpetosiphon geysericola (Herpetosiphon geysericola 균주의 Amylase 부분정제 및 특성)

  • Jun, Yeong-Soo;Hong, Yong-Ki;Seu, Jung-Hwn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.128-135
    • /
    • 1987
  • Extracellular ${\alpha}-amylase$, ${\beta}-amylase$ and glucoamylase produced by a thermophilic and cellulolytic bacterium, Herpetosiphon geysericola CUM 317, were partially purified by salting out with ammonium sulfate and by chromatography on a DEAE-cellulose column and on a CM-cellulose column. The Km values of ${\alpha}-amylase$, ${\beta}-amylase$ and glucoamylase for potato starch were $2.31mg/m{\ell}$, $7.69mg/m{\ell}$, and $8.33mg/m{\ell}$. The molecular weights of ${\alpha}-amylase$, ${\beta}-amylase$ and glucoamylase were calculated to be about 84000 dalton, 76000 dalton and 80000 dalton, respectively.

  • PDF

Antimutagenic Effect of Dietary Fiber from Yam (Dioscorea batatas D$_{ECNE}$) Against 2-AF and MNNG (2-AF와 MNNG에 대한 마 식이섬유의 항돌연변이 효과)

  • 신남희;구성자
    • Korean journal of food and cookery science
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 1998
  • On the mutagenicity induced by 2-aminofluorene (2-AF) with S9 mix and N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG) without S9 mix, the antimutagenic effects of dietary fiber (total dietary fiber, u-cellulose and pectin) from Yam were examined by the Ames assay using Salmonella typhimurium TA98 and TA100. Total dietary fiber, $\alpha$-cellulose ind pectin from natural and cultural Yam didn't have mutagenicity. Most of sample dietary fiber showed the antimutagenicity. Total dietary fiber from cultural Yam was more effective than that from natural Yam on mutagenicity induced by 2-AF and MNNG. $\alpha$-cellulose from cultural Yam was more effective than that from natural Yam on mutagenicity caused by 2-AF and MNNG. Pectin from natural and cultural Yam had antimutagenic effect on mutagenicity induced by MNNG. In this study, antimutagenicity on MNNG was more effective than that on 2-AF. Antimutagenic effect of Samples had influence on incubation time. $\alpha$-cellulose and pectin from natural and cultural Yam showed stronger antimutagenic effect than standard $\alpha$-cellulose and standard pectin, respectively, on mutagenicity induced by 2-AF and MNNG.

  • PDF

Effects of Cellulose, Ginseng and ${\alpha}$-tocopherol on Lead Toxicity in Rats (Cellulose, Ginseng 및 ${\alpha}$-tocopherol 의 쥐의 연중독(鉛中毒) 방어효과(防禦效果)에 관(關)한 연구(硏究))

  • Kwon, Hyuk-Hee;Yu, Jong-Yull
    • Journal of Nutrition and Health
    • /
    • v.17 no.3
    • /
    • pp.193-198
    • /
    • 1984
  • Rice, the staple food in Korea, is deficient to some extent in protein, lipid and vitamins. This study was carried out in order to investigate the effects of dietary supplementation to the rice diet of cellulose, ginseng, and ${\alpha}$-tocopherol on lead toxicity in rats. Using male rats fed the rice diet with the distilled drinking water containing 750mg of lead as nitrate per liter, for 11 weeks, organ weights, hemoglobin levels, serum glutamic pyruvic transaminase activity and accumulation of lead in liver, blood and kidney were observed. Supplementation of cellulose, ginseng and ${\alpha}$-tocopherol to the lead groups showed the protective effect significantly in the weight of liver but no influence in hemoglobin levels. Ginseng especially decreased the serum glutamic pyruvic transaminase activity to normal level. The three supplemented diets reduced the lead accumulation in kidney and blood, but not in liver.

  • PDF

Antimutagenicity of Yam(Dioscorea batatas Decene) Toward Sodium Azide and 2-AF (Sodium Azide와 2-AF에 대한 마(Dioscorea batatas Decene)의 항변이원성)

  • 이임선;정세영;심창섭;구성자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.277-284
    • /
    • 1996
  • The objective of this study was to screen the antimutagenicity of yam enzymatic browning reaction product (YEBRP), mucopolysaccharide and dietary fiber from yam to the mutagen of sodium azide and 2-aminoflourene (2-AF). Antimutagenicity of YEBRP on the mutagenicity of sodium azide showed no difference compared to control without YEBRP but that of 2-AF was high In all substrate. (P<0.01) On the mutagenicity of sodium azide and 2-AF, antimutagenicity of mucopolysaccharide and dietary fiber were high (p<0.01) in $\alpha$-cellulose and hemicellulose, Antimutagenicity of u-cellulose on the mutagenicity of 2-AF was high at 5 hours reaction time but that was decreased as the reaction time increased.

  • PDF

Characterization of Cellulase from Bacillus subtilis NSC Isolated from Soil (토양으로부터 단리한 Bacillus subtilis NSC 유래 Cellulase의 특성 규명)

  • Kim, Sang Jin;Park, Chang-Su
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2018
  • We isolated microorganisms from soil, which is sampled at forest, Kyeonbuk, Korea, as cellulolytic microorganisms. The isolated strains were identified by analysis of 16S rRNA gene from the starins. The result, four kinds of Bacillus subtilis, one kind of Bacillus amyloliquefaciens, and one kind of Bacillus cereus were identified. Among these strains, Bacillus subtilis was selected due to its high cellulase activity and this strain was named as Bacillus subtilis CNS. The optimum pH and temperature of the cellulase from Bacillus subtilis CNS was pH 5.0 and $40^{\circ}C$, respectively. In the investigation of pH and temperature stability, the cellulase from Bacillus subtilis NSC stabled pH 4.0~6.0 range and until $40^{\circ}C$ for 30 min perfectly. In the enzyme activity for various cellulosic substrate, cellulase from Bacillus subtilis CNS showed the highest activity for CM-cellulose. And, the enzyme activities for alkali swollen cellulose, Alpha-cellulose, Sigmacell-cellulose, and Avicel were approximately 31%, 8%, 8% and 4% of activity for CM-cellulose, respectively. In the degradation of CM-cellulose, the 0.26 U/ml and 0.52 U/ml of cellulase showed 0.43 and 0.76 U/ml activity for CM-cellulose after the reaction of 120 min, respectively.

Adsorption Characteristic of Endo I and Exo II Purified from Cellulase by Trichoderma viride on Celluloses with Different Crystallinity (결정성이 다른 셀룰로오스에 대한 Trichoderma viride속 Cellulase로부터 분리한 Endo I 및 II의 흡착특성)

  • 김동원;홍영관;장영훈;이재국
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.162-167
    • /
    • 1998
  • The adsorption behaviors of two major cellulase components, endo I and exo II, from Trichoderma viride were investigated using $\alpha$-celluloses with different correlation crystallinity index(Cc) as substrates. The adsorption of cellulase enzyme components was significantly affected by the reaction condition and the physicochemical properties of the cellulose. The $\alpha$-cellulose was hydrolyzed in the presence of cellulase for various periods. The correlation crystallinity index of $\alpha$-cellulose increased with increasing the hydrolysis time. The adsorption was apparently found to obey the first-order kinetics, and the adsorption activation energy(Ea) was calculated from the adsorption rate constant(ka). The value of adsorption rate constant for endo I was larger than that of exo II. This means that endo I are adsorbed more rapidly than exo II. With the increase in correlation crystallinity index, the values of the adsorption rate constants for endo I and exo II decreased, respectively. The activation energy for the adsorption of exo II on the cellulose also was larger than that of endo I. Also adsorption activation energy of endo I and exo II increased with an increase in the crystallinity of sample cellulose.

  • PDF

Physicochemical Properties of Fibrous Material Fraction from By-product of Aloe vera Gel Processing (알로에 베라 겔 가공부산물로서의 섬유질 분획의 성분 및 물리화학적 특성)

  • Baek, Jin-Hong;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2010
  • The fibrous material fraction as a by-product from the commercial aloe vera gel processing was obtained and freeze dried. The physicochemical characteristics such as the proximate composition, crystalline/surface structures and several physical functionalities including the water holding capacity (WHC), swelling capacity (SW), oil holding capacity (OHC), emulsion/foam properties and viscosity properties of this powdered sample (100 mesh) were investigated and analyzed by comparison with commercial $\alpha$-cellulose as a reference sample. The total dietary fiber content of powdered sample was very high as much as 87.5%, and the insoluble dietary and soluble dietary fiber content ratios were 77.6 and 22.4%, respectively. The FT-IR spectrum of powdered sample showed a typical polysaccharide property and exhibited a x-ray diffraction pattern for cellulose III and IV like structure. SW (8.24${\pm}$0.15 mL/g), WHC(6.40${\pm}$0.19 g water/g solid) and OHC(10.32${\pm}$0.29 g oil/g solid) of freeze dried aloe cellulose were about 3.3, 1.4 and 2 times higher than those of commercial $\alpha$-cellulose, respectively. Aloe cellulose (~2%, w/v) alone had no foam capacity while improved the foam stability of protein solution (1% albumin+0.5% $CaCl_{2}$) by factor of 300%. Emulsion capacity of 2%(w/v) aloe cellulose was about 70% level of 0.5%(w/v) xanthan gum, but its emulsion stability was about 1.2 times higher than that of xanthan gum. Also, aloe cellulose containing CMC (carboxyl methyl cellulose) of 0.3%(w/v) showed a very good dispersity. Aloe cellulose dispersion of above 1%(w/v) exhibited higher pseudoplasticity and concentration dependence than those of $\alpha$-cellulose dispersion, indicating the viscosity properties for new potential usage such as an excellent thickening agent.

Enhanced Dispersion of High Performance Dye-sensitized Solar Cells (분산특성이 향상된 고효율 염료감응형 태양전지)

  • Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.501-505
    • /
    • 2009
  • $TiO_2$ nano-particle paste was prepared by ethyl cellulose, $\alpha$-terpineol and bis(2-ethylhexyl) phthalate (dioxcyl phthalate) for dye-sensitized solar cells (DSSCs). Dispersion and absorbance of $TiO_2$ photoanode films was controlled by adding different amount of ethyl cellulose and $\alpha$-terpineol. The morphology of prepared $TiO_2$ films was studied by field emission scanning electron microscopy (FE-SEM) and the optical properties of $TiO_2$ films were measured by UV/vis spectra. Photovoltaic-current density was observed to determine the electrochemical response of DSSCs. Energy conversion efficiency was obtained about 7.1% at ethyl cellulose and $\alpha$-terpineol at optimal mixed ratio (as ethyl cellulose: 0.1 g; $\alpha$-terpineol: 1.5 ml) under illumination with AM 1.5($100\;Wcm^{-2}$) simulated sunlight.

Simultanceous Saccharification and Fermentation of Cellulose for Lactic Acid Production

  • Yoon, Hyon-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.101-104
    • /
    • 1997
  • Lactic acid production from ${\alpha}$-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar and Lactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, PH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46$^{\circ}C$ and pH 5.0. The observed yield of lactic acid from ${\alpha}$-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microoraganism could withstand. The optimum yeast extract loading was found to be 2.5g/L. Lactic acid was observed to be inhibitory to the microorganisms' activity.

  • PDF

Degradation of Lignin and Cellulose Model Compounds by Chlorine Dioxide

  • Yoon, Byung-Ho;Lee, Seon-Ho;Wang, Li-Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.1-7
    • /
    • 1999
  • In this paper, five lignin model compounds (vanilly alcohol, veratryl alcohol, veratryl methyl carbinol, biseugenol) and three cellulose model compounds (${\alpha}$-D-glucos, methyl-${\beta}$-D-glucopyra-noside, D-cellobiose) were used to study the degradation rates of lignin and cellulose with chlorine dioxide. Biseugenol, which has unsaturated structure on the side chain of aromatic ring, was found to react with chlorine dioxide very quickly and consume large amount of chlorine dioxide. Phenolic structures, represented by veratryl alcohol and apocynol, react with chlorine dioxide much faster than nonphenolic structures represented by veratryl alcohol and veratryl methyl carbinol. The degradations of cellulose models were generally very slight, the corder of reaction rate being ${\alpha}$-D-glucose > D-cellobiose > methyl-${\alpha}$-D-glucopyranoside.

  • PDF