• 제목/요약/키워드: along-wind response

검색결과 90건 처리시간 0.025초

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

Experimental study on possible vortex shedding in a suspension bridge - Part II - Results when under typhoon Babs and York

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • 제10권6호
    • /
    • pp.555-576
    • /
    • 2007
  • Statistical analysis on the measured responses of a suspension bridge deck (Law, et al. 2007) show that vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a sectional model. This paper further analyzes the measured responses of the structure when under typhoon conditions for any possible vortex shedding events. Parameters related to the lifting force in such a possible event and the vibration amplitudes are estimated with a single-degree-of-freedom model of the system. The spatial correlation of vortex shedding along the bridge span is also investigated. Possible vortex shedding events are found at both the first torsional and second vertical modes with the root-mean-square amplitudes comparable to those predicted from wind tunnel tests. Small negative stiffness due to wind effects is observed in isolated events that last for a short duration, but the aerodynamic damping exhibits either positive or negative values when the vertical angle of wind incidence is beyond ${\pm}10^{\circ}$. Vibration of the bridge deck is highly correlated in the events at least in the middle one-third of the main span.

夏季 韓國 南東海域에서 湧昇과 關聯된 바람, 海水面 및 表層水溫의 變化 TEVARIATIONS OF SEA LEVEL AND SEA SURFACE TEPERATURE ASSOCIATED WITH WIND -INDUCED UPWELLING IN THE SOUTH

  • 이재철
    • 한국해양학회지
    • /
    • 제18권2호
    • /
    • pp.149-160
    • /
    • 1983
  • 해수면과 연안표층수온의 기록으로부터 바람에 의한 용승효과를 확인하기 위해서 1973년 부터 1979년까지의 자료들이 이용되었다. 하계에 남동해안에 평행한 바람이 우세하며 울기-감포 근해에서 용승을 일으키는 것으로 나타났는데 강한 남서풍이 3일 이상지속될 때 해수면과 표층수온이 감소하는 용승효과가 현저하게 나타났다. 평균적으로 한 번의 용승은 약10일동안 지속 되었고 그 동안에 해안에 평행안 성분의 평균풍속은 약 4.0m/sec였다.

  • PDF

Tidal and Sub-tidal Current Characteristics in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.19-30
    • /
    • 2007
  • This study analyzed the current meter records along with wind records for over 500 days obtained in the Kangjin Bay, South Sea, Korea spanning from March, 2003 to Nov. 2005. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, the principal axis, progressive vector diagrams. These analyses can illustrate the response of residual current to the local wind resulting in the net drift with rotational motion. Current speed ranges from -28 to 33 (cm/sec), with standard deviations from 6.5 to 12.9 (cm/sec). The harmonic analyses of the tidal current show the average form number, 0.12 with semi-diurnal type and the rectilinear orientation of the major axis toward northeast. The magnitudes of the semi-major range from 12.7 to 17.7 (cm/sec) for M2 harmonics, while for S2 harmonics, they range from 6.3 to 10.4 (cm/sec), respectively. In the spectral and coherency analysis of residual current and wind, a periodicity of 13.6 (day) is found to be most important in both records and plays an important role in the net drift of residual current. The progressive vector diagrams of residual current and wind show two types of behaviors such as unidirectional drift and rotational motion. It was also found that 3 % rule holds approximately to drive 1 (cm/sec) drift current by 30 (cm/sec) wind speed based on the correlation of the semi-major axis of wind and residual current.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석 (Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load)

  • 김주원
    • 한국전산구조공학회논문집
    • /
    • 제36권3호
    • /
    • pp.185-192
    • /
    • 2023
  • 본 연구에서는 KBC2022의 풍직각방향 변동풍하중 스펙트럼을 이용하여 풍직각방향 풍하중을 생성하고 생성된 풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적거동을 해석하는 프로그램을 개발하고자 한다. 풍응답은 일차 모드가 탁월하고 소성화에 의한 진동의 변화는 작고, 풍방향 진동과 풍직각방향 진동은 독립적이며, 비틀림 진동의 영향은 작다고 가정한다. 적용 구조물을 수평방향의 단자유도 모델로 가정하고, 구조물의 질량을 집중질량으로 치환하여 상부에 작용시킨다. 비탄성 해석을 위한 이력모델은 이선형 모델을 적용한다. 강성비(𝛼)와 항복점비(𝛽)를 변수로 비탄성 동적응답을 분석한 결과 강성비가 일정한 경우에 항복점비가 증가할수록 최대변위비는 감소하다가 최소값을 나타내고 증가하는 것으로 나타났다. 강성비가 0.5이상인 경우 최대변위비가 1이하가 되는 항복점비가 존재하며, 이는 비탄성 내풍설계시 비탄성 거동을 허용하더라도 탄성설계된 건물보다 최대 변형이 감소함을 나타낸다.

감포-울기 연안해역에서 발생하는 냉수대 현상과 해상풍과의 관계 (The Wind Effect on the Cold Water Formation Near Gampo-Ulgi Coast)

  • 이동규;권재일;한상복
    • 한국수산과학회지
    • /
    • 제31권3호
    • /
    • pp.359-371
    • /
    • 1998
  • 감포-울기 연안에서 1987년부터 1994년까지 일어난 여름철 냉수대 현상을 수산진흥원의 연안정지 수온 관측치와 위성에 의한 해표면 사진, 그리고 SSM/I에 의한 해상풍 자료를 이용하여 연구하였다. 남서풍에 의한 냉수대의 반응 시간은 하루나 이틀정도로 아주 짧았고 냉수대는 울릉도 근해까지 세력을 확장하였다. 연구기간 8년중 남서풍 이벤트는 총 61회였는데 그 중 $80\%$의 경우 수온이 $1^{\circ}C$ 이상 떨어졌다. 바람합력과 최대하강온도와의 상관관계는 0.6으로 비교적 높았으며, 바람이 이 해역의 냉수대 발생 주원인으로 밝혀졌다. 감포 앞 해상에서 급격히 변하는 해저지형과 포텐셜 와도 보존 법칙에 의해 해안선과 분리되어 외해로 향하는 동한난류의 영향도 감포-울기 연안의 냉수대가 자주 출현하는 원인인 것으로 연구되었다.

  • PDF

Numerical investigation of truck aerodynamics on several classes of infrastructures

  • Alonso-Estebanez, Alejandro;del Coz Diaz, Juan J.;Rabanal, Felipe P.A lvarez;Pascual-Munoz, Pablo;Nieto, Paulino J. Garcia
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.35-43
    • /
    • 2018
  • This paper describes the effect of different testing parameters (configuration of infrastructure and truck position on road) on truck aerodynamic coefficients under cross wind conditions, by means of a numerical approach known as Large Eddy Simulation (LES). In order to estimate the air flow behaviour around both the infrastructure and the truck, the filtered continuity and momentum equations along with the Smagorinsky-Lilly model were solved. A solution for these non-linear equations was approached through the finite volume method (FVM) and using temporal and spatial discretization schemes. As for the results, the aerodynamic coefficients acting on the truck model exhibited nearly constant values regardless of the Reynolds number. The flat ground is the infrastructure where the rollover coefficient acting on the truck model showed lowest values under cross wind conditions (yaw angle of $90^{\circ}$), while the worst infrastructure studied for vehicle stability was an embankment with downward-slope on the leeward side. The position of the truck on the road and the value of embankment slope angle that minimizes the rollover coefficient were determined by successfully applying the Response Surface Methodology.