• Title/Summary/Keyword: alluvial island

Search Result 17, Processing Time 0.025 seconds

Development and Operation of Region-Focused Program by Field Survey of Physical Geography with the Case Study on Miho River Basin, Central Korea (자연지리 답사를 통한 지역화 교육 프로그램의 개발과 운영 - 미호천 유역 하천지형을 사례로 -)

  • Lee, Min-Boo;Kim, Jeong-Hyuk;Choi, Hun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.53-67
    • /
    • 2014
  • This study aims to develop and operate education program for the region-focused field study on the physical geography for the students to understand their community places in the geography classes of elementary and, secondary schools and college. The theme of the program is understanding the geomorphic structures and processes including river channel, wetland, levee, terrace, sand and gravel bar and alluvial island, floodplain and irrigation system in Miho river basin, Chuncheong Province of Central Korea. For the study of regional geography as their community, the field education is focused on relations of landform to everyday life, though different levels in learning achievement according to each school classes. But, the purpose of the field education is, same at all classes, for student to analyze and understand the geomorphic effects on the place of everyday life in geography education.

The hydrodynamic dispersion characteristics of chloride in high permeable alluvial deposit at the Ttaan island, Kimhae city (김해시 딴섬의 고투수성 충적층에서 염소이온의 수리분산특성)

  • Kang, Dong-Hwan;Kim, Tae-Yeong;Yang, Sung-Il;Chung, Sang-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.707-711
    • /
    • 2007
  • 낙동강과 밀양강의 합류지점에 위치한 김해시 딴섬 지역의 지표면하 $25{\sim}35\;m$ 구간에 형성되어 있는 고투수성 충적층 내 염소이온의 수리분산특성을 연구하기 위한 수렴흐름 추적자시험(convergent flow tracer test)이 수행되었다. 추적자로는 IW-1공과 IW-2공에서 각각 염소이온 5kg이 순간주입(instantaneous injection) 되었으며, PW공에서 일정한 양수율(2,500 m3 /day)로 채수하면서 염소이온농도를 관측하였다. 염소이온 주입 후 경과시간에 따른 염소이온농도 자료를 이용하여 농도이력곡선과 누적질량회수곡선이 산출되었으며, 관측된 염소이온농도의 정규분포를 검증하기 위한 일반통계분석이 수행되었다. 그리고, 농도이력의 증가/감소 구간에서의 함수를 추정하였으며, 두 시험에서 동일한 시간에 관측된 염소이온농도의 상관성이 분석되었다. 본 현장에서 수행된 추적자시험에 의한 종분산지수의 추정은 CATTI 코드(Sauty and Kinzelbach, 1992)에 의해 해석되었다. 추정된 종분산지수는 IW-1공과 PW공 구간에서는 0.4152 m, IW-2공과 PW공 구간에서는 0.4158 m 로서 매우 유사한 값으로 나타났다. 이는 추적자시험이 수행된 충적층에서의 용질이송이 방사상으로 비교적 균일함을 의미하는 것이다. 본 연구에서 수행된 추적자시험의 규모(2 m)를 Xu and Eckstein(1995)이 제시한 방정식에 대입하여 산정된 종분산지수는 0.0458 m 이었다. 이러한 결과는, 본 연구지역에서 수렴흐름 추적자시험에 의해 추정된 고투수성 충적층의 종분산지수가 일반적인 자연대수층에 비해 9.1배 정도 높다는 것을 의미한다. 이는 시험대수층의 투수성이 매우 높아 염소이온의 용질이송이 매우 빠르게 발생되었기 때문이다. 본 연구에서 추정된 종분산지수를 Gelhar et al.(1992)의 연구 결과와 비교 분석한 결과에서도 시험규모에 비해 매우 높은 수리분산이 발생된 것으로 나타났다. 그리고 염소이온의 확산면적을 추정하기 위해, 수렴흐름 추적자시험에 의한 종분산지수와 시험대수층의 평균선형유속을 이용하여 종분산계수를 구하였다. 현장에서 수행된 양수시험에 의한 평균선형유속 22.44 m/day와 평균 종분산지수 0.4155 m를 적용하여 산정된 종분산계수는 $9.32\;m^2/day$이었다. 따라서, 시험부지 내 충적층에서 일정한 양수율$(2,500\;m^3/day)$로 지하수를 개발할 시에 양수정 주변지역으로 유입되는 염소이온의 확산면적은 1일 $9.32\;m^2$ 정도일 것으로 나타났다.

  • PDF

Spatial Distribution of Tidal Flats in Korea (한국(韓國)의 간석지(干潟地) 분포(分布))

  • Jo, Myung-Hee;Jo, Wha-Ryong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.195-208
    • /
    • 1997
  • On the basis of the topographic maps in the 1910's and 1990's and the classification map of Landsat TM satellite image photographed on Sept 1, 1996, the spatial distribution and the current situation concerning tidal flats in Korea were studied by measuring the area with GIS Arc/Info system and examining the regional condition required to develop the tidal flats. The results are as follow; The tidal flat resources in Korea cover an area of about 3800 square meters, including the reclaimed one since the 1910's. And they are widely distributed in the west coast of South Jeonla, Kyunggi bay, Asan bay, the south coast of South Jeonla, Kunsan bay, Chunsoo bay, and the coast of South Kyungsang and Pusan when put in the order from bigger area. Given the area under the construction at present, more than 50% of the tidal flats are reclaimed ones. The tidal flats are being developed especially in Kyunggi and Asan bays because they perfectly measure up to the conditions required. For Kunsan bay, a remarkably good supply system of the alluvial sedimentary materials and a favorable coastline requirement for the coast of the South Jeonla also contribute to the development of the tidal flats. In the case study of Kunsan bay, it was shown that the shape of the tidal flat is making a continuous change and the area is getting bigger in terms of the multi-temporal change of the tidal flat development. However, while in the first half of the 20th century, the increasing rate of the area was considered to be rather high, it is considerably lowered almost to a standstill in the latter half of the century.

  • PDF

Formative Ages and Processes by Types of Natural Abandoned Channels in Korea (우리나라 자연 구하도의 유형별 형성시기와 형성과정)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-15
    • /
    • 2012
  • The formative ages and processes of five natural abandoned channels in three types in Korea are studied. The former meandering channel in Seongsandong, Uljin-gun was abandoned due to the neck-cutoff of incised meander, Wangpi River in approximately 2.5~2.6ka and the abandoned channel in Bulyeong Temple, Uljin-gun was formed by the neck-cutoff of Wangpi River in approximately 90ka. Deduced from these results, it is judged to favorable for formation of abandoned channels by incised meander cutoff in interglacial or interstadial stages that had a better condition for meander cutoff because of active lateral erosion. Due to the corrosion of limestone joints in the underground of ridges between Hwangji River and Cheolam River, the channel in Gumumso, Taebaek-si was abandoned by the stream piracy connecting and combining the rivers into a limestone cave in approximately 40ka and higher lower reaches of Dong River than Banbyeon River in Seonbawi, Yeongyang-gun was turned to the abandoned channel throughout the stream piracy between the rivers in approximately 1.4ka. During Last Glacial Maximum in Jangcheon-ri, Chungju-si, Namhan River was divided into the eastern and western tributaries due to the alluvial island in approximately 10ka and then the western tributary was abandoned recently.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

The Ages of Fault Activities of the Ilgwang Fault in Southeastern Korea, Inferred by Classification of Geomorphic Surfaces and Trench Survery (지형면 분류 및 트렌치 조사에 의한 일광단층의 단층활동시기 추정)

  • Jang, Ho;Lee, Jin-Han;An, Yun-Seong;Joo, Byeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.21-30
    • /
    • 2004
  • The Ilgwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haeundae-ku, Busan in southeastern part of the Korean Peninsula. This paper si mainly concerned about the ages of the fault activities especially in the Quaternary, inferred from classification of geomorphic surfaces and trench excavation for the construction of Singori nuclear power plant. The geomorphic surfaces are classified into Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace(MIS 5a), the 20 m a.s.l. Marine terrace(MIS 5e), the Reworked surface of 45 m a.s.l. Marine terrace(MIS 7 or 9) and the Low relief erosional surface. The Low relief erosional surface is distributed coastal side, the Reworked surface of 45m a.s.l. Marine terrace inland side by the Ilgwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilgwang Fault reveals no dislocation. A site was trenched on the straight contact line with $N30^{\circ}E$-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shore line of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri formation - before the formation of the 45 m a.s.l. Marine terrace(220 Ka. y. B.P. or 320. Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. marine terrace in the paleogeography.

  • PDF