• Title/Summary/Keyword: alloying

Search Result 1,173, Processing Time 0.033 seconds

Effects of Alloying Elements on the Mechanical Properties of Annealed and Normalized 3.60wt%C-2.50wt%Si Ductile Cast Irons (3.60wt%C-2.50wt%Si 구상흑연주철의 소둔 및 소준시 기계적 성질에 미치는 합금 원소의 영향)

  • Baek, Jong-Kyu;Seo, Gap-Seong;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.159-166
    • /
    • 2007
  • Effects of alloying elements on the mechanical properties of 3.60wt%C-2.50wt%Si ductile cast iron with annealing and normalizing were investigated. Yield and tensile strengths were increased from 278 and 415 MPa to 316 and 440 MPa respectively as manganese content was increased upto 0.45wt% while elongation was decreased from 24.2 to 5.0%. The formers were increased and the latter was decreased with the increased amount of copper, molybdenum or nickel added. Meanwhile the tensile strength of annealed specimen was increased with the amount of alloying elements added, it was decreased by annealing. It was increased greatly by normalizing and the amount of alloying elements added except molybdenum.

Effect of alloying Copper on the Corrosion Resistance of Stainless Steels in Chloride Media

  • Ujiro, T.;Satoh, S.;Staehle, R.W.;Smyrl, W.H.
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.127-134
    • /
    • 2003
  • In order to explain the effect of alloying Cu on the corrosion resistance of stainless steels in chloride media for both ferritic and austenitic stainless steels, the corrosion behavior of Cu-bearing stainless steels was investigated. Alloying Cu showed beneficial effect in an active potential range and harmful effect in a noble potential range. The beneficial effect of alloying Cu was explained by the stability of deposited Cu on an anodic surface. Difference in the effect of alloying Cu between the ferritic and austenitic steels was ascribed by the differences in their corrosion potentials and the morphology of the deposited Cu.

The Effects of Mechanical Alloying Conditions on the Formation of Mn-sulfide (망간황화물형성에 미치는 기계적합금화 공정변수의 영향)

  • 안인섭;박동규;정광철
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.253-257
    • /
    • 2001
  • The effects of mechanical alloying conditions on the formation of Mn-sulfide powders were analyzed. Impeller rotating speed, lubricant coating and added amounts of process control agent(stearic acid) were selected as a process control factor. MnS compounds are synthesized in 3 hours by mechanical alloying at the alternative milling condition. Discontinuous rotating speed of 1200rpm for 4 minutes and 1000rpm for 1 minute shows more effects on the compound formation of MnS. After coating of lubricant on the wall, elementary Mn and sulfur were partially remained by mechanical alloying. The friction effects of the wall and grinding media on the powders are significantly important to form the compound of MnS.

  • PDF

Wettability and Microstructures of Ag System Insert Metals Manufactured by Mechanical Alloying Method: (기계적 합금화방법으로 만들어진 Ag계 삽입금속의 젖음성과 미세조직)

  • Kim, Gwang-Su;No, Gi-Sik;Hwang, Seon-Hyo
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1020-1027
    • /
    • 2001
  • Powder type Ag system insert metals were manufactured by mechanical alloying method. Alloying method was the ball milling process using zirconia ball media, and all alloying variables were constant except the milling time. The milling times were selected 24, 48 and 72 hours. The insert metals made by milling method were observed using scanning electron microscope and x-ray analyses. And also, the evaluation of wettability and microstructures of the insert metals were conducted to investigate the characteristics of the brazed joint. The wettability of the insert metals made by milling of 48 hours, was the best condition. And the insert metals contained Cd shows good wettability, however, there was the oxides residue on the brazing test specimen. The microstructures of the manufactured and the commercial insert metals were almost same displaying the Cu- rich proeutectic and Ag-rich eutectic. Further, there were some porosities. The 48 hours alloyed insert metal was exhibited the most sound brazed joint without containing porosity due to the superior wettability and good alloying condition.

  • PDF

Synthesis of $\textrm{TiB}_2$ Powder by Mechanical Alloying and the Effect of Zr and Ta Substitution for Ti (기계적합금법에 의한 $\textrm{TiB}_2$ 분말의 제조 및 Zr과 Ta이 합성에 미치는 영향)

  • Hwang, Yeon;Kang, Eul-Son
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.787-791
    • /
    • 1999
  • TiB$_2$powders were prepared by mechanical alloying, and the effect of Zr and Ta substitution for Ti was investigated. It was possible to produce titanium diboride phase by mechanical alloying titanium and boron elemental powders for 280 hours. The amorphization reaction, a common process which occurs during mechanical alloying, has not been found. When zirconium of which atomic radius was larger than that of titanium was substituted for Ti, the alloying time was greatly reduced. On the contrary, substitution of tantalum for titanium prolonged the alloying time because of the less negative heat of formation of tantalum diboride than that of titanium diboride.

  • PDF

Effects of Mechanical Alloying on the Structure of Rapid Solidified Al-(1, 3, 5 )Cr Alloys (급속냉각한 Al-(1, 3, 5)Cr 합금의 조직에 미치는 기계적 합금화의 영향)

  • Jhee, T.G.;Kim, W.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.194-203
    • /
    • 1993
  • Rapid solidified splats Al-(1, 3, 5Cr) Alloys were produced by atomization-splat quenching method. Effects of mechanical alloying on the structure and mechanical properties of rapidly solidified Al-(1, 3, 5)Cr alloys were studied. Degree of mechanical alloying of Al-(1, 3, 5)Cr alloys can be determined by observing the microstructural refinement, microhardness and microstructure of Al-(l, 3, 5)Cr splats during processing. In the initial stage of mechanical alloying of the Al-(1, 3, 5)Cr splats fracturing of the grain boundaries occured first, followed after fracturing of zone A regions. Saturation hardness of Al-(1, 3, 5)Cr alloys increased proportionally with increasing concentration of the solute (Cr). Age hardening was not observed in these alloys. Decomposition temperature of Al-1Cr splats after mechanical alloying was higher than that of Al-5Cr splats. The density of $Al_7$ Cr precipitates increased proportionally with increasing chromium content, as a result, there was a transition to finely and spherically dispersed phase after mechanical alloying.

  • PDF

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

Evolution on Microstructures and Tensile Properties of 10Cr-1Mo ODS Steel with Different Lengths of Mechanical Alloying Process Times (10Cr-1Mo 산화물 분산강화 강의 미세조직과 인장특성에 미치는 기계적 합금화 공정시간의 영향)

  • Noh, Sanghoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.375-380
    • /
    • 2021
  • In this study, we investigate the effect of the duration of mechanical alloying on the microstructures and mechanical properties of ODS ferritic/martensitic steel. The Fe(bal.)-10Cr-1Mo pre-alloyed powder and Y2O3 powder are mechanically alloyed for the different mechanical alloying duration (0 to 40 h) and then constantly fabricated using a uniaxial hot pressing process. Upon increasing the mechanical alloying time, the average powder diameter and crystallite size increased dramatically. In the initial stages within 5 h of mechanical alloying, inhomogeneous grain morphology is observed along with coarsened carbide and oxide distributions; thus, precipitate phases are temporarily observed between the two powders because of insufficient collision energy to get fragmented. After 40 h of the MA process, however, fine martensitic grains and uniformly distributed oxide particles are observed. This led to a favorable tensile strength and elongation at room temperature and 650℃.

Effect of Micro-Alloying Elements and Transformation Temperature on the Correlation of Microstructure and Tensile Properties of Low-Carbon Steels with Ferrite-Pearlite Microstructure (페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.184-191
    • /
    • 2017
  • This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.