• 제목/요약/키워드: alloying

검색결과 1,173건 처리시간 0.036초

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.

잔류 자성원소 검출에 의한 금속간화합물의 기계적 합금화 공정에서의 합금화 정도 해석 (Determination of the Degree of Alloying by Detection of Residual Ferromagnetic Elements for Intermetallic Alloys Processed by Mechanical Alloying)

  • 어순철
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.561-566
    • /
    • 2003
  • Mechanical alloying(MA) process using elemental powders followed by hot pressing has been applied to some intermetallic alloy system containing ferromagnetic elements, such as NiAl and $FeSi_2$. A modified thermogravimetric analysis (TGA) technique was used to investigate the degree of alloying in milled powders and hot consolidated specimens as well as heat-treated bulk specimens. It is shown that the measurement of Curie temperatures in MA intermetallic powders and consolidated specimens containing ferromagnetic components, when determined as a function of milling and heat treatment parameters, can give some insight into the progress and mechanism of alloying.

비조질강의 바우싱거 효과에 미치는 변형율 영향 (Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel)

  • 권용남;이영선;김상우;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

윤활조건에 따른 Mo-Cu-N 코팅의 마모특성에 관한 연구 (Study of anti wear resistance of Mo-Cu-N coatings deposited by reactive magnetron sputtering process with single alloying target)

  • 문경일;박현준;이한찬
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.95.1-95.1
    • /
    • 2017
  • In this study, it has been tried to make the single Mo-Cu alloying targets with the Cu showing the best surface hardness that was determined by investigation on the coatings with the double target process. The single alloying targets were prepared by powder metallurgy methods such as mechanical alloying and spark plasma sintering. The nanocomposite coatings were prepared by reactive magnetron sputtering process with the single alloying targets in $Ar+N_2$ atmosphere. The microstructure changes of the Mo-Cu-N coatings with diverse Cu contents were investigated by using XRD, SEM and EDS. The mechanical properties of the coatings were evaluated by using nano-indentor, scratch test, and ball on disc methods. Especially, the coated samples were tested by using various lubricating oil to compare the property of anti wear-resistance. In this study, the nano-composite MoN-Cu coatings prepared using an alloying target was eventually compared with the coatings from the multiple targets.

  • PDF

Rapid와 conventional Alloying 공정에 의한 GaAs Ohmic Contact의 특성 비교연구와 TLM의 새로운 해석 방법의 제안 (Comparison Studies on GaAS Ohmic Contacts Fabricated by Rapid and Conventional Alloying Process and New Analysis Method of TLM Patterns)

  • Rhee, Jin-Koo
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1663-1668
    • /
    • 1988
  • Ohmic contact process for the fabrication of GaAs integrated circuits is very important. Specific contact resistivities, assuming Rsm=Rs, were measured after the rapid and the conventional alloying process, respectively. The results show that the characteristics of ohmic contact through the rapid alloying process is much better (Apc=1.3~3.3x10**-7 \ulcorner-(m\ulcorner. This is probably due to intensive and compound energy densities during the rapid alloying process. New analysis method of TLM patterns viz. measurements of normlaized specific contact resistivities are proposed to reduce measurement errors that could occur when measuring the small contact end resistances. The adoption of rapid alloying process for the mass production of GaAs integrated circuits could greatly reduce the total processig time.

  • PDF

다단 냉간 단조에 미치는 냉간비조질강의 특성에 관한 연구 (The effect of micro-alloying steel characteristics on the multi-stage forging process)

  • 이승헌;이교택;권용남;김지훈;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2005
  • The micro-alloying forging steels have been developed to save energy consumption during forging and subsequent heat treatment stages. The work hardening ability of micro-alloying forging steels is one of major hardening component while it gives severe die damage if the forging process design is poorly set up on the other hand. In the present study, it was tried to characterize three types of micro-alloying forging steels to understand the differences with the conventional low carbon steels used fur cold forging with a spherodizing heat treatment. After forging of a certain forging part with both micro-alloying forging steels and conventional low carbon steel, several mechanical tests were carried out.

  • PDF

기계적 합금화법으로 제조된 Cu/TiO2 촉매용 분말의 상변화 특성 (Phase Transformation Properties of Cu/TiO2 Photocatalyst Powders Fabricated by Mechanical Alloying)

  • 안인섭;배승열;이영란;고봉석
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.110-115
    • /
    • 2002
  • In order to obtain the nano size $10wt%Cu-TiO_2$composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof $10wt%Cu-TiO_2$ composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type $TiO_2$composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size $TiO_2$powders were obtained. Both the phase of mechanically alloyed 10 wt% $Cu-TiO_2$ and pure $TiO_2$ powders were not transformed to anatase after annealing at the temperature range between 350 to 500 $^{\circ}C$. The intermetallic compound of $Cu_2Ti_4$O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile $TiO_2$ to the anatase phase after heat treatment at the temperature between 350 and $550^{\circ}C$.

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성 (Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process)

  • 이길근;정해용;이병우
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF