• Title/Summary/Keyword: alloy 42

Search Result 218, Processing Time 0.027 seconds

Effects of Tool Materials on Corrosion Properties of Friction Stir Welded 409 Stainless steel (툴 재료가 마찰교반접합된 409 스테인리스강의 부식 특성에 미치는 영향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Song, Keun;Yeon, Yun-Mo;Lee, Won-Bae;Lee, Jong-Bong;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.42-42
    • /
    • 2009
  • 마찰교반접합 (Friction Stir Welding)은 1991년 영국 TWI에서 개발된 접합 법으로서 회전하는 툴이 재료내부에 삽입되면 툴과 재료사이에서 발생하는 마찰열에 의하여 온도가 상승하게 되어 재료는 연화되고, 이러한 재료 내부에서 회전하는 툴이 이동하게 되면 재료 내부는 기계적 교반에 의해 소성변형이 일어남과 동시에 접합이 이루어진다. 마찰교반접합은 동적 재결정에 의한 접합부의 미세한 결정립 형성으로 인하여 기계적 특성이 향상되며 보호 가스가 필요 없어 친환경적임과 동시에 용융 용접 법에 비해 접합 시 에너지 소모가 적으며 또한 접합 후 접합부에서의 변형이 상대적으로 적다는 장점이 있다. 이러한 장점을 가진 마찰교반접합은 알루미늄 합금, 마그네슘 합금 그리고 동 합금과 같은 저 융점 비철재료에 많은 연구와 적용 사례들이 있어왔다. 하지만 최근에는 일반 탄소강, 연강, 오스테나이트계 스테인리스강, 니켈 합금, 티타늄 합금과 같은 고융점 재료에도 연구 및 적용이 진행되고 있는 추세이다. 페라이트계 스테인리스강은 가격이 비싼 Ni을 함유하지 않아 오스테나이트계 스테인리스강에 비하여 강재의 가격은 낮으면서도 고온특성 및 내식성이 우수하여 건축용, 자동차 배기계용으로 널리 사용되고 있다. 하지만 이런 장점을 가진 페라이트계 스테인리스강을 기존의 용융 용접 법으로 접합 시 용접부 및 열영향부에서의 결정립의 조대화로 인한 인성 및 연성이 저하되며, 특히 예민화된 열영향부 입계 내에 Cr 탄화물이 석출되어 입계주변에 Cr 결핍 층을 형성되어 입계부식이 발생되는 문제점이 발생된다. 본 연구에서는 마찰교반접합을 이용하여 두께 3mm의 409 스테인리스강에 대해 맞대기 접합을 실시하였다. 접합 변수를 툴의 재료 (WC-12wt%Co, $Si_3N_4$)로 하여 접합을 실시하였고 접합 후 외관상태 점검, 광학 현미경과 주사 전자 현미경을 통하여 미세조직을 관찰하였으며 황산-황산동 부식 시험을 실시하여 접합부의 부식 특성을 평가하였다.

  • PDF

INFLUENCE OF SEVERAL POSTS AND IPS-EMPRESS INGOT THICKNESS ON THE FINAL SHADE OF ALL-CERAMIC CROWNS (수종의 post와 IPS-Empress Ingot 두께가 전부 도재 수복물 최종색조에 미치는 영향)

  • Bok Won-Mi;Choi Keun-Bae;Park Charn-Woon;Ahn Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.514-523
    • /
    • 2004
  • Statement of problem: All-ceramic restorations have been advocated for superior esthetics. Various post and core systems have been used to improve the strength of damaged teeth, but it is unclear whether they affect the final shade of finished all-ceramic restorations. Purpose: The influence of different types of post and core systems on light transmission through all-ceramic crowns was assessed by spectrophotometric analysis. Also the masking effect of different thickness of ceramic ingot was evaluated. Material and Methods : Forty-five sample disks (15mm in diameter) at several thickness(1.0, 1.5, 2.0mm) and value(shade 100, 200, 300) were made in heat pressed ceramic(IPS-Empress). Background specimens simulating gold-alloy cast posts(Type III casting gold alloy), metal posts(Ni-Cr casting alloy) and ceramic posts(CosmoPost) were fabrica-ted. Resin composite(Z250, A3 shade) was used as a tooth substrate reference. For each combination, the change in color was measured with a spectrophotometer. Readings were performed for 2 conditions (1) ability of ceramic to mask the core in relation to its thickness(1.0, 1.5, or 2.0mm) ; (2) influence of post and core types on the final color of the ceramic. Data were recorded according to the CIE $L^*a^*b^*$ systems and color difference($\Delta$E) was calculated. Results: 100 shade ingot: when ceramic thickness was 1.0mm, $\Delta$E value for ceramic post larger than 1 but $\Delta$E value for metal and gold post was larger than 2. For ceramic thickness of 1.5mm, only $\Delta$E value for metal was larger than 2, and the other samples' $\Delta$E value was smaller than 2. For ceramic thickness of 2.0mm, $\Delta$E values for all specimens was smaller than 2. 200 shade ingot: when ceramic thickness was 1.0mm, $\Delta$E value for ceramic post was smaller than 1 but $\Delta$E value for metal and gold post was larger than 2. For ceramic thickness of 1.5 mm, only the $\Delta$E value for metal was larger than 2, and the other samples' $\Delta$E value was smaller than 2. For ceramic thickness of 2.0mm, $\Delta$E values for all specimens was smaller than 1. 300 shade ingot: when ceramic thickness was 1.0mm, only $\Delta$E value for metal was larger than 2 and the other samples' $\Delta$E value was smaller than 2. For ceramic thickness of 1.5mm, $\Delta$E values for all specimens was smaller than 1. For ceramic thickness of 2.0mm, $\Delta$E values for all specimens was smaller than 1. Conclusion: The final esthetic result of the IPS-Empress glass-ceramic restoration was not affected by the presence of different core materials when the thickness was more than 2.0 mm. When ceramic thickness decreases to 1.5mm, it is advised to take the substrate aspects into consideration. If the ceramic thickness is less than 1.0mm, using the tooth color matched substrate is strongly recommended.

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets

  • El-Attar, Adel;Saleh, Ahmed;El-Habbal, Islam;Zaghw, Abdel Hamid;Osman, Ashraf
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.221-232
    • /
    • 2008
  • This paper represents the final results of a research program sponsored by the European Commission through project WIND-CHIME ($\underline{W}$ide Range Non-$\underline{IN}$trusive $\underline{D}$evices toward $\underline{C}$onservation of $\underline{HI}$storical Monuments in the $\underline{ME}$diterranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, the dynamic characteristics of two outstanding Mamluk-Style minarets, which similar minarets were reported to experience extensive damage during Dahshur 1992 earthquake, are investigated. The first minaret is the Qusun minaret (1337 A.D, 736 Hijri Date (H.D)) located in El-Suyuti cemetery on the southern side of the Salah El-Din citadel. The minaret is currently separated from the surrounding building and is directly resting on the ground (no vaults underneath). The total height of the minaret is 40.28 meters with a base rectangular shaft of about 5.42 ${\times}$ 5.20 m. The second minaret is the southern minaret of Al-Sultaniya (1340 A.D, 739 H.D). It is located about 30.0 meters from Qusun minaret, and it is now standing alone but it seems that it used to be attached to a huge unidentified structure. The style of the minaret and its size attribute it to the first half of the fourteenth century. The minaret total height is 36.69 meters and has a 4.48 ${\times}$ 4.48 m rectangular base. Field investigations were conducted to obtain: (a) geometrical description of the minarets, (b) material properties of the minarets' stones, and (c) soil conditions at the minarets' location. Ambient vibration tests were performed to determine the modal parameters of the minarets such as natural frequencies and mode shapes. A $1/16^{th}$ scale model of Qusun minaret was constructed at Cairo University Concrete Research Laboratory and tested under free vibration with and without SMA wire dampers. The contribution of SMA wire dampers to the structural damping coefficient was evaluated under different vertical loads and vibration amplitudes. Experimental results were used along with the field investigation data to develop a realistic 3-D finite element model that can be used for seismic risk evaluation of the minarets. Examining the updated finite element models under different seismic excitations indicated the vulnerability of such structures to earthquakes with medium to high a/v ratio. The use of SMA wire dampers was found feasible for reducing the seismic risk for this type of structures.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process (반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가)

  • Cha, Jae-Sang;Kim, Sung-Joon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF