• Title/Summary/Keyword: allowable displacement

Search Result 182, Processing Time 0.022 seconds

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.

Analysis of Behavior for Underground Flexible Pipes Under Seismic Loads (지진발생에 따른 지중연성관의 거동특성 분석)

  • 김경열;홍성연;이대수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.709-716
    • /
    • 2003
  • Flexible pipes (corrugated polyethylene pipes) are normally used for underground power distribution grids. In this paper, dynamic analysis was carried out through FEM in order to investigate the structural behaviour of pipes subjected to seismic loads. The burial depth and the number of pipes were major parameters in the numerical analysis to determine the response of pipes. The results show that the displacement of pipes under given conditions are all satisfactory in comparison of the allowable strain criteria -maximum 3.5 %.

  • PDF

Evaluation of Ductility in Reinforced Concrete Members Using Material Models in Eurocode2 (유로코드 2 재료모형을 사용한 철근콘크리트 부재의 연성도 평가)

  • Choi, Seung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.287-297
    • /
    • 2015
  • In concrete structural design provisons, there is a minimum allowable strain of steel to ensure a ductility of RC members and a c/d is limited for the same purpose in EC2. In general, a ductility capacity of RC members is evaluated by a displacement ductility which is a ratio of ultimate displacement to yield displacement, and it is necessary to calculate accurately a yield displacement and an ultimate displacement to evaluate a displacement ductility. But a displacement in members is affected by various member characteristics, so it is hard to calculate a displacement exactly. In this study, a displacement ductility is calculated by calculating a yield displacement and an ultimate displacement through a moment-curvature relationship. The main variables examined are concrete strength, yield strength, steel ratio, spacing of confinement, axial force ratio and concrete ultimate strain. As results, as a concrete strength is increased, a ductility displacement is increased. But as yield strength, steel ratio, spacing of confinement and axial force ratio are increased, a displacement ductility is decreased. And a displacement ductility is necessary to calculate a response modification factor (R) of columns for seismic design, so it is appeared that it is important to calculate a displacement ductility more accurately.

Current Collection Performance of Catenary System within Tunnel Section (터널구간 가선계의 집전성능)

  • Son Gun-Ho;Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.767-772
    • /
    • 2004
  • A dynamic simulation program of a catenary-pantograph system including tunnel section and transient section is developed in this study. The simulation program can accommodate for the pantograph of two panheads and three d.o.f model. Using the developed program, the dynamic characteristics with a SCHUNK'S WBL 85-PANTOGRAPH is analyzed at the conventional TAEBAEK line and its tunnel section when the catenary system is supported by a tunnel bracket. The simulation results show that the variation of contact force and uplift displacement is allowable in general section and the entrance and exit of a tunnel, but the uplift displacement and the separation ratio within tunnel section is difficult to allow.

  • PDF

Active Control of Air-Spring Vibration Isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

A Study on the Measurement of Relative Rotation of Center Pivot in Power Car of KTX (고속열차 동력차의 센터피봇 상대 회전각 계측에 관한 연구)

  • Seo Sung-Il;Jeong Wu-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.277-281
    • /
    • 2006
  • The center pivot in the power car of KTX carries the traction force of the motor bogie to the carbody. The damage to the center pivot due to failure of swivel joint causes a serious hazard of the train. To prevent the hazard, information on the relative motion between bogie and carbody is necessary. In this paper, a method to measure the relative rotation of the center pivot is proposed and an actual test to verify the method and safety is conducted. The test results show that the rotation of the center pivot is within the allowable limit and the damage due to the relative motion doesn't take place.

A Study on the Vibrational Reduction Evaluation and the Relative Displacement in the External Vibration of Precision Measuring System (초정밀 측정/가공 장비의 외부진동에 대한 상대변위의 추출과 진동성능 평가에 관한 연구)

  • 전종균;엄호성;김강부;원영재
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2002
  • Generally, there are laser operating equipments( aligner, stepper) and electronic microscope( SEM, TEM) as a high precision manufacturing and inspection equipment in semiconductor production companies, precision examination and measuring laboratories. Mostly, these equipments are characterized by projection and target part. The relative displacements between projection and target part are dominant roles in vibrational problem in these precision equipments. These relative displacements are determined by the position of incoming vibration and the difference of vibration response in projection and target part. In this study, the allowable vibrational limits are suggested and the vibrational reduction plans are proposed by measurement and analysis of vibration phenomenon in the Clean Room in PDP(plasma display panel) production building. The vibration performance is evaluated by comparison relative displacements between projection and target part before/after the vibration isolation plan.

Current Collection Performance of Catenary System within Tunnel Section (터널구간 가선계의 집전성능)

  • Son Gun-Ho;Lee Seung-Il;Choi Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A dynamic simulation program of a catenary-pantograph system including tunnel section and transient section is developed in this study. The simulation program can accommodate for the pantograph of two panheads and three d.o.f model. Using the developed program, the dynamic characteristics with a SCHUNK'S WBL 85-PANTOGRAPH are analyzed at the conventional TAEBAEK line and its tunnel section when the catenary system is supported by a tunnel bracket. The simulation results show that the variation of contact force md uplift displacement is allowable in general section and the entrance and exit of a tunnel, but the uplift displacement and the separation ratio within tunnel section is difficult to allow.

Displacements Behavior of Retaining Walls by Shaking Table Test (진동대 실험을 통한 흙막이 벽체의 변위 거동 특성)

  • Yoon, Won-Sub;Yun, Bu-Yeol;Yang, Chul-Kyu;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.409-418
    • /
    • 2018
  • In this study, experiments were carried out after fabricating and installing a physical model considering the size of the prototype. In the model test, the number of struts placed on the wall and the applied acceleration were selected as test variables. Two different types of waves, long-period and short-period, were applied with magnitudes of 0.05g, 0.1g, 0.2g, and 0.3g. Measured are displacements at specified points. As a result of the analysis, displacement exceeding the allowable displacement of the wall occurred at an acceleration greater than 0.05g to 0.1g depending on the seismic waves applied. Therefore guidelines have to be established through further studies for aseismic design of earth retaining walls.

Strain Characteristics of Underground Flexible Pipes Subject to Cyclic Vehicle Load (차량 반복하중에 의한 지중연성관의 거동특성)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Kim, Dae-Hong;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.730-737
    • /
    • 2004
  • In this paper, in order to examine cyclic hehavior characteristics and safety of underground flexible pipes for electric cables subject to cyclic vehicle load, FEM analysis and cyclic soil box test were carried out. As results of the test, it was revealed that the vertical displacement of the test was larger than that of FEM analysis because thermal effect arising from power cables made reduction of rigidity of the pipe so that large deformation of the pipe induced by the heat occured. Moreover, it was shown that the final vertical displacement under about 0.4 million times of the cyclic load test was not satisfied with elastic allowable displacement of the pipe, and long term stability of the pipe was not stable since behavior characteristics of the pipe exists plastic strain range pasted clastic strain range.

  • PDF