• 제목/요약/키워드: allostery

검색결과 3건 처리시간 0.02초

Comparative Analysis of the Three Classes of Archaeal and Bacterial Ribonucleotide Reductase from Evolutionary Perspective

  • Pangare, Meenal G.;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.170-176
    • /
    • 2010
  • The Ribonucleotide reductases (RNR) are essential enzymes that catalyze the conversion of nucleotides to deoxynucleotides in DNA replication and repair in all living organisms. The RNRs operate by a free radical mechanism but differ in the composition of subunit, cofactor required and regulation by allostery. Based on these differences the RNRs are classified into three classesclass I, class II and class III which depend on oxygen, adenosylcobalamin and S-adenosylmethionine with an iron sulfur cluster respectively for radical generation. In this article thirty seven sequences belonging to each of the three classes of RNR were analyzed by using various tools of bioinformatics. Phylogenetic analysis, dot-plot comparisons and motif analysis was done to identify a number of differences in the three classes of RNRs. In this research article, we have attempted to decipher evolutionary relationship between the three classes of RNR by using bioinformatics approach.

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun;Choi, Sangmin;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.899-908
    • /
    • 2020
  • Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.