• Title/Summary/Keyword: all ceramic (AC)

Search Result 7, Processing Time 0.019 seconds

Porcelain Fracture in Metal Ceramic, All ceramic and Zirconia restoration (금속도재, 전장도재, 지르코니아 수복물에서의 도재 파절)

  • Cheolyeon Kim
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.46-53
    • /
    • 2023
  • Porcelain fractures associated with metal ceramic(MC), all ceramic (AC), and zirconia restorations are common complications. Several factors of fracture are suggested; Property of materials, Design of the coping for metal ceramic, fabrication techniques, supporting structure, occlusal force, parafunctional habit are being considered. In this article, these factors are discussed in detail.

Esthetic Rehabilitation of Anterior Dentition by All Ceramic Crowns Using IPS e.max CAD : A Case of Tetracycline Discoloration (전치부 전부도재관을 이용한 테트라싸이클린 착색의 심미보철 회복 증례 (IPS e.max CAD 블록의 이용))

  • Kim, Jae-Hong;Cho, Young-kyu;Kim, Hae-Young
    • Journal of dental hygiene science
    • /
    • v.11 no.4
    • /
    • pp.299-303
    • /
    • 2011
  • The purpose of this case report was to present an example of an esthetic and functional rehabilitation of anterior teeth with tetracycline discoloration and minor morphological abnormality of a 39-year old female. A chairside computer-aided design/computer-aided manufacturing (CAD/CAM) system with CEREC AC was applied for the prosthetic procedure and all ceramic crowns made with lithum disilicate (IPS e.max CAD) restored the esthetic and functional features of sixteen anterior teeth successfully.

Comparative Investigation of the Hydrogen Production of Zinc/carbons Prepared from Non-activated Carbon and Surface-modified Activated Carbon by Treatment with Zinc Salts

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.607-612
    • /
    • 2007
  • Zn-AC and Zn-H-AC series prepared from non- and surface-modified activated carbon were investigated in terms of their hydrogen production capacity. An increase in the concentration of the zinc salts used with these series was shown to lead to a decrease in the values of the surface textural properties. The existence of zinc complexes on the surface was confirmed from an analysis of XRD data. The SEM micrographs of the two different sample types showed that the transformation of the carbon surface with an acid pre-treatment significantly change the metal contents on the surfaces of the carbon matrix. The EDX spectra indicated that all of the samples were richer in the amount of oxygen and zinc compared to any other elements. The results obtained using the Boehm's titration method showed that the positive introduction of the acidic groups on the carbon surfaces with the acid treatment is correlated with an increase in the amounts of zinc complexes with variation of the acidic groups. In terms of the hydrogen production performance, the volume fractions of the Zn-H-AC series were found to produce higher amounts than the Zn-AC series as a function of the metal contents considering the effects of the acid treatment.

Electrical Conduction Mechanisms of $RuO_2$ Based Thick Film Resistor ($RuO_2$계 후막저항체의 전기전도기구)

  • 구본급;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1529-1535
    • /
    • 1994
  • Electrical conduction mechanisms of RuO2-based thick film resistors were investigated with frequency depandence on AC conductivity. Electrical conduction mechanisms of lower resistivity system (100{{{{ OMEGA }}/sq) sintered at 600~90$0^{\circ}C$ were all metallic conduction mechanism. In case of higher resistivity (10K{{{{ OMEGA }}/sq) system, the electrical conduction mechanisms were very depenent on sintering temperature. When sintering temperature was $600^{\circ}C$, the electrical conduction mechamism was ionic, and as increasing the sintering temperature, the electrical conduction mechanism was changed from ionic to hopping conduction mechanism.

  • PDF

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics (망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구)

  • Pal, Dharmendra;Pandey, J.L.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.

A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint (방청도료의 부식특성과 염분농도의 상관관계에 관한 연구)

  • Moon, Kyung-Man;Lee, Myeong-Woo;Lee, Myeong-Hoon;Kim, Hye-Min;Baek, Tae-Sil
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.