• Title/Summary/Keyword: alkanes

Search Result 178, Processing Time 0.023 seconds

Predicting N-alkane Concentration in Pastures and Deer Faeces for Dietary Composition and Digestibility Measurement Using Near Infrared Spectroscopy

  • Ru, Y.J.;Kruk, J.A.;Fischer, M.;Choct, M.;Glatz, P.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1611-1616
    • /
    • 2002
  • The alkanes in plant materials can potentially be used as markers to estimate composition and digestibility of diet of deer for the development of feeding strategies, but the analysis of alkanes in plant materials and deer faeces is time-consuming and expensive. In this study, 242 faecal samples and 119 pasture samples were scanned using near infrared spectroscopy (NIR) and the concentrations of alkanes in these samples were analysed to develop calibrations for predicting alkane concentrations in pastures and deer faeces. The $R^2$ values for NIR calibrations were <0.6 for $C_{24}$, $C_{26}$, $C_{32}$ and $C_{36}$, but were >0.8 for other alkanes for faecal samples. The $R^2$ values were >0.87 for alkanes with chains from $C_{27}$ to C35 for pasture samples. However, NIR was unable to predict concentrations of alkanes with chains of $C_{24}$, $C_{26}$, $C_{32}$ and $C_{36}$ in faecal samples and $C_{24}$, C25, $C_{26}$ and $C_{36}$ in pasture samples. While the use of these NIR calibrations will accelerate the estimation of diet digestibility, dietary components and botanical composition of pastures, the influence of the type of pasture on NIR calibration will require further examination.

Contrasting Sources of Plant Wax n-alkanes and n-alkanoic Acids in Gulf of Mexico Sediments (ODP 625B) (멕시코만 코어 퇴적물(ODP 625B)의 식물왁스 탄화수소(n-alkanes)와 지방산(n-alkanoic acids)의 생성기원 비교 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Long chain plant waxes (n-alkanes, n-alkanoic acids, and n-alcohols) and their carbon isotopic compositions (${\delta}^{13}C$) in geologic archives are valuable tools for paleovegetation reconstruction. However, the sensitivity of different plant wax constituents to vegetation shift is not well understood. This study explores controls on the variation in ${\delta}^{13}C$ values of long-chain n-alkanes ($C_{27}$ to $C_{33}$) and n-alkanoic acids ($C_{26}-C_{30}$) in the Gulf of Mexico core sediments (ODP 625B) near the Mississippi River delta. n-Alkanoic acids' ${\delta}^{13}C$ values were higher than those of n-alkanes by 1-2‰ on average and such a pattern is the opposite from their isotope fractionation observed in living plants: 1-2‰ smaller in n-alkanes than n-alkanoic acids. We attribute this offset to contributions from aquatic plants or microbes that produce high concentrations of $^{13}C-enriched$ long-chain n-alkanoic acids. The sensitivity of n-alkanes and n-alkanoic acids to vegetation and climate varied among chain lengths. The $n-C_{33}$ alkanes were most sensitive to $C_4$ grassland expansion among n-alkane homologues, while no specific trend was observed in n-alkanoic acids. This is due to the similarity in n-alkanoic acid concentrations between $C_3$ and $C_4$ plants by homologues and low terrestrial plant-derived n-alkanoic acid contributions to the sediments. The results of this study suggest that long chain n-alkanoic acids' ${\delta}^{13}C$ values in sediments may be influenced by contributions from different sources such as aquatic plants or microbial inputs and therefore interpretations regarding this matter should be cautiously formulated. We suggest that there is a need for further studies on characterizing long-chain n-alkanoic acids ($C_{26}-C_{34}$) in aquatic plants and microbes from various climates and environments in order to investigate their production and integration into sedimentary archives.

Analysis of Water Soluble Organic Carbon (WSOC) and n-alkanes for the Ambient PM10 in the Anmyon Island (안면도 미세먼지의 수용성 유기탄소 및 알칸계 유기성분 분석)

  • Lee, Ji Yi;Kim, Yu Won;Kim, Eun Sil;Lee, Sun Young;Lee, Hyunhee;Yi, Seung-Muk;Kwon, Su Hyun;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.131-138
    • /
    • 2011
  • The concentration levels of n-alkanes and water soluble organic carbon (WSOC) at Anmyon, a Global Atmospheric Watch (GAW) station operated by Korea Meteorological Administration (KMA), has been characterized for the PM10 samples collected in 2010. It was found that the concentrations of WSOC at Anmyon were comparable to those in Seoul and lower than those in Gosan, another background area in Korea. However, the maximum concentration of the WSOC at Anmyon was observed in fall while that at Seoul was in winter. It suggests that the emission and/or transformation characteristics at two areas are different. The concentrations of n-alkanes at Anmyon were slightly lower than at Gosan and about one thirds at Seoul. However, it was found that at Gosan the n-alkanes from natural sources were dominant at Gosan. On the other hand, n-alkanes from anthropogenic sources were dominant at Anmyon. Study directions to further understand the characteristics of aerosols at Anmyon are discussed.

Effect of Initial Concentration on Pilot-Scale Composting of Diesel-Contaminated Soil (초기농도가 파일럿 규모의 디젤 오염토양 콤포스팅 처리에 미치는 영향)

  • 임재량;박준석;황의영;남궁완
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.35-41
    • /
    • 2002
  • This study was conducted to evaluate the effect of initial concentration on pilot-scale composting of diesel-con-laminated soil. Sandy soi] was used in this study. Target contaminant, diesel oil, was spiked. at about 10,000, 25,000, and 50,000 mg TPH/kg of dry roil. Mit ratio of soil to sludge was 1:0.5 as wet weight basis. Removal efficiencies for initial concentrations of 12,966,23,894 and 51,042 mg TPH/kg were 90, 93 and 54%, respectively, during 33 days of composting. Normal alkanes in TPH ranged from 15 to 22% in initial soils. Volatilization of individual normal alkane in 1,999 mg n-alkanes/kgwas completed within 4 days, while n-alkane compounds of Cl1-Cl4 in 5,270 and 9,836 mg n-alkanes/kg were volatilized continuously during 33 days of composing operation. The first order degradation rate con-stants for 12,966, 23,894, and 51,042 mg TPH/kg were 0.058, 0.076, and 0.022/day, and those for 1,997 5,270, and 9,836 mg n-alkanes/kg were 0.093, 0.100, and 0.019/day, respectively. Considering TPH removal rate, $CO_2$porduction rate, and dehydrogenase activity, the concentration of 51,042 mg TPH/kg inhibited biodegradation of diesel-composting.

Identification and Antibacterial Activity of Volatile Flavor Components of Cordyceps Militaris

  • Park, Mi-Ae;Lee, Won-Koo;Kim, Man-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 1999
  • Flavor characteristics of raw Cordyceps militaris significatntly different from those of dried one. In the case of raw Cordyceps militaris , major flavor components were composed of 5 alcohols, 3 ketones, 4 phenols, 9 alkanes , and 3 alkenes. The major alcohol was 1-octen-3-ol(22.56%, 1147.3% ng/ml), which contributed to the characteristic green flavor. Ketones (3-ocatone, inparticular )were present in the highest concentration in raw Cordyceps militaris . In contrast, major flavor components of dried Cordyceps militaris were composed of 4 alcohols, 4 ketones, 3 furans, 4 pyrizines, 2 dithiazines, 5 phenols , 8alkenes , 17 alkanes, and 8 fatty acids. Dried Cordyceps militaris had unique sweet aroma of sesame as wella s a milky flavor. Green or fruit flavor were rarely detected . In alkanes , 10 cosanes, component fo wax were present. Typical flavor components of alkanes such as $\beta$-caryophyllen and Δ-cadinene were also detected. Fatty acids of dried Cordyceps militaris ranged from myristic acid (14 :0) to linoleic acid (18 ; 2). The sweet aroma of dried Cordyceps militaris was mostly due to pryazines, dithaiazines, and furans. Two dithaizines were identified and characteristics of these flavor components was a roasted bacon flavor. Strong antibacterial acitivity was observed toward Vibrio spp. such as V. vulnificus, V.cholerae, V. parahaemlyticus. Relatively high antibacterial acitivity was shown toward Bacillus subtilis , B,cereus, Staphyllococcus aureus, and Corynebacterium xerosis.

  • PDF

Comparative study on microbial degradation characteristics of liquid and solid n-alkanes by Acinetobacter sp. (Acinetobacter sp. 에 의한 액체, 고체 알칸의 미생물 분해특성 비교연구)

  • Dong-Hyuk CHOI
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.95-104
    • /
    • 1999
  • Comparative biodegradation studies of liquid and solid alkanes and of two different solid alkanes were conducted by an isolated Acinetobacter sp., which degraded crude oil alkanes simultaneously. for the determination of degradation mechanism of hydrophobic crude oil constituents. Also a model oil experimental system composed of a solid alkane. heneicosane, as a substrate and a non-degradable non-aqueous phase liquid. pristane, as an oil matrix was established and studied. It was proposed that the Acinefobacter sp. utilized hydrophobic substrates directly on the surface of them with no difference in the degradation rates between the liquid and solid alkanes. On the basis of the results from the heneicosane/pristane system which imitates crude oil matrix containing solid constituents. the crude oil matrix was considered to reduce the bioavailability of contained substrates by reducing the specific surface area of substrates to contact with microorganisms.

  • PDF

Biodegradation of crude oil hydrocarbons by Acinetobacter sp. isolated from activated sludge (활성슬러지에서 단리한 Acinetobacter sp.에 의한 원유탄화수소분해)

  • Dong-Hyuk CHOI;Dong Hoon LEE
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • A Gram-type negative bacteria that can utilize crude oil as the sole source of carbon and energy was isolated from an activated sludge of a local sewage treatment plant and identified tentatively as belonging to the genus Acinetobacter. The isolate could degrade n-alkanes and unidentified hydrocarbons in crude oil and utilize n-alkanes, hydrophobic substrates, as sole carbon and energy sources. n-Alkanes from tridecane (Cl3) to triacontane (C30) in crude oil were degraded simultaneously with no difference in degradation characteristics between the two close odd and even numbered alkanes in carbon numbers. The linear growth of the isolate and the degradation characteristics of Pr-alkanes suggested that the transport of substrates from the oil phase to the site where the substrates undergo the initial oxidation in microorganism might be the rate limiting in the biodegradation process of crude oil constituents. The remainder fraction of substrates after cultivation was considered to reflect the hydrocarbon inclusions in the cell mass, characteristics in Acinetobacter species, and to control the transport of substrates from crude oil phase. On the basis of the results, the isolate was considered to play an important role in the degradation study of hydrophobic environmental pollutants.

  • PDF

Study on the Stability of Emulsion Stabilized with Polyoxyethylene Dodecyl Ethers (폴리옥시에틸렌 도데실 에테르 유체로된 유화계의 안정도에 관한 연구)

  • 이충남
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.11 no.1
    • /
    • pp.21-31
    • /
    • 1985
  • The effect of dispersed phase on the stability of emulsion system with polyoxyethylene dodecyl ethers and their variation of ethylene oxide moles was studied by such methods as interfacial tension measurement, centrifugation and droplet size variation with time. The experiments showed that, in interfacial tension measurement, long chain alkanols into dispersed phaes are more effectively adsorbed onto interface, while long chain alkanes nearly not, and in centrifugation, dispersed phase with alkanols is less separated than that with alkanes. On the other hand, alkanes help more stabilyzing emulsion than alkanols in droplet size variation. And the addition of NaCl or Urea, and variation of E.O. moles have very slight effects on the stability with alkanes than with alkanols. Moreover, the longer carbon chain length is, dispersed phase is more effective on emulsion stability. Supposed from these facts is that more stable emulsion can be made with alkanes which retard molecular diffusion by water solubility decrease rather than alkanols which raise resistance to coalescence by rigid interfacial mixed monolayers formation. In conclusion, the stabilities of these emulsions are proved to be more influenced by molecular diffusion than coalescence.

  • PDF

The Synthesis of Pyrimidine Derivatives Containing H-Chelate (H-킬레이트가 있는 피리미딘 유도체들의 합성)

  • Kim, Jeong Hwan;Seo, Jeong Hyeop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.637-640
    • /
    • 1990
  • Bis (4,6-dichloropyrimidine-5-yl) alkanes as the frame of "intramolecular electronic energy transfer" system have been synthesized and the H-chelates of $\alpha$-(4-cyanomethylquinoline-6-chloropyrimidine-5-yl)-$\omega$-(4,6-dichloropyrimidine-5-yl) alkanes have been synthesized from bis (4,6-dichloropyrimidine-5-yl) alkanes and 2-cyanomethylquinoline. The structures of the compounds have been studied by spectral methods.

  • PDF

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Points for n-Alkanes and Aromatic Compounds (노말알칸류와 방향족탄화수소류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.59-64
    • /
    • 2011
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UELs), the upper flash point of n-alkanes and aromatic compounds were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation and chemical stoichiometric coefficient tusing the experimental upper flash point were compared with the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.