• 제목/요약/키워드: alkalophilic

검색결과 137건 처리시간 0.027초

Recovery of Cholesterol from the $\beta$-Cyclodexgtrin-Cholestrerol Complex Using Immobilized Cyclomaltodextrinas of Alkalophilic Bacillus sp. KJ 133

  • Kwon, Ho-Jeong;Jung, Hye-Jin;Kwak, Hae-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.712-715
    • /
    • 2001
  • A new combined method including the enzymatic hydrolysis of $\beta$-cyclodextrin ($\beta$-CD) and solvent extraction fo cholesterol from the hydrolyzed mixture was developed to recover cholesterol from a $\beta$-CD-cholesterol complex prepared from dairy products, such as cream, milk, and cheese. Cyclomaltodextrinase (cyclomatodextrin dextrin hydrolase, EC 3.2.1.54, DCase_ prepared form alkalophilic Bacillus sp. KJ 133 hydrolyzed the $\beta$-DC of the $\beta$-CD-cholesterol complex, and then, free cholesterol was efficiently extracted from the hydrolyzed mixture by a nonpolar solvent such as ethyl acetate. To increase the stability of free CDase, immobilized CDase was developed using sodium alginate as a carrier. The immobilized CDase showed a high recovery yield of cholesterol in a time-dependent manner compared to the free CDase. A gas chromatography analysis showed that more than 70% of cholesterol was recovered from the $\beta$-DC-cholesterol complex of cream by the immobilized CDase, whereas only 3% and 29% of cholesterol were recovered when the solvent extraction and free CDase treatment were used, respectively. The cholesterol recovered can be used as a raw material for steroid synthesis. Furthermore, this method can be an efficient way to recover cholesterol or other organic compounds that are bound in a $\beta$ -DC-cholesterol or -organic compound complex.

  • PDF

생물방제균 Bfacillus subtilis YB-70의 외부 Urease 유전자 도입과 길항력 증강

  • 최종규;김용수;이은탁;김상달
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.30-36
    • /
    • 1997
  • To genetically breed powerful multifunctional antagonistic bacteria, the urease gene of alkalophilic Bacillus pasteurii was transferred into Bacillus subtilis YB-70 which had been selected as a powerful biocontrol agent against root-rotting fungus Fusarium solani. Urease gene was inserted into the HindIII site of pGB215-110 and designated pGU266. The plasmid pGU266 containing urease gene was introduced into the B. subtilis YB-70 by alkali cation transformation system and the urease gene was very stably expressed in the transformant of B. subtilis YB-70(pGU266). The optimal conditions for the transfomation were also evaluated. From the in vitro antibiosis tests against F. solani, the antifungal activity of B. subtilis YB-70 containing urease gene was much efficient than that of the non-transformed strain. Genetic improvement of B. subtilis YB-70 by transfer of urease gene for the efficient control seemed to be responsible for enhanced plant growth and biocontrol efficacy by combining its astibiotic action and ammonia producing ability.

  • PDF

Purification and characterization of a xylanase from alkalophilic cephalosporium sp. RYM-202

  • Kyu, Kang-Myoung;Kwon, Tae-Ik;Rhee, Yuung-Ha;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제33권2호
    • /
    • pp.109-114
    • /
    • 1995
  • Alkalophilic Cephalosporium sp. RYM-202 produced multiple xylanases extracellularly. One of these xylanases was purified to electrophoretical homogeneity by chromatography with DEAE-Sephadex A-50, Sephacryl S-200 HR and Superose 12 HR. The purified xylanase differed from most other microbial xylanases in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase was 23 kDa by SDS-polyacrylamide electrophoresis and 24 kDa by gel permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permentation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity at pH 8.0 and 50 .deg.C. It was stable over a wide range of pH and retained more than 80% of its original activity after 24 h of incubation even at pH 12. The Km values of this enzyme on birchwood xylan and oat spelts xylan were 2.33 and 3.45 mg/ml, respectively. The complete inhibition of the enzyme of n-bromosuccinimide suggests the involvement of tryptophan in the active site. The sylanase lacked activity towards crystalline cellulose and carboxymethyl cellulose.

  • PDF

호알칼리성, 고온성 Bacillus sp. TA-11에 대한 오골계 난백 Lysozyme의 용균특성 (Characteristics of the Egg White Lysozymes from Ogol Fowl and Fowl for the Lysis of an Alkalophilic and Thermophilic Bacillus sp. TA-11)

  • 이성훈;조창호;안용근;이종수
    • 한국식품영양학회지
    • /
    • 제9권4호
    • /
    • pp.447-451
    • /
    • 1996
  • Bacillus sp. TA-11에 대한 오골계 난백 lysozyme과 일반 난백 lysozyme의 용균성을 비교분석 하였다. 오골계 난백 lysozyme의 용균활성은 Bacillus sp. TA-11를 5$0^{\circ}C$에서 18시간 정치배양한 대수기 후기의 세포에 대하여 가장 높았고, lysozyme의 농도는 0.25%가 최적이었다. 또한 lysozyme의 최적반응 pH와 온도는 각각 4.5와 35$^{\circ}C$였다. 일반 난백 lysozyme의 용균활성은 시험균주를 24시간 배양한 정지기의 세포에 대하여 가장 높았고 lysozyme의 최적 농도는 0.5%였으며 반응 최적 pH와 온도는 각각 5.5와 4$0^{\circ}C$이었다.

  • PDF

Selection of the Constitutive Mutant of Bacillus firmus var. alkalophilus and its Characteristics of Cydodextrin Glucanotransferase Production

  • Lee, Yong-Hyun;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.61-67
    • /
    • 1995
  • To investigate the role of induction on CGTase production for alkalophilic Bacillus firm us var. alkalophilus H609, the constitutive mutants that form a halo around its colonies at non-inducible AG agar media containing amylose and glucose were selected. The selected constitutive mutants could produce CGTase in the range of 18.9 to 28.8 units/ml $\cdot A_{600}$ in the alkaline basal medium, and finally a constitutive mutant Bacillus firmus var. alkalophilus CM46 was selected. The constitutive nature of CM46 was also confirmed in protein level using SDS-PAGE. The effects of induction and catabolite repression for both parent strain Bacillus firmus var. alkalophilus H609 and constitutive mutant CM46 were also compared by adding soluble starch and glucose during cultivation. The selected mutant CM46 was a non-inducible but a catabolite regulated type mutant. Even though inductive regulation was released, the specific CGTase activity defined as CGTase activity per cell concentration was not increased compared with that of parent strain. The cell growth and CGTase production patterns of constitutive mutant Bacillus firmus var. alkalophilus CM46 were compared with the parent strain to identify CGTase production characteristics.

  • PDF

호알칼리성 Bacillus sp. HJ-12 유래 $\beta$-1,4-D-arabinogalactanase의 특성 (Characterization of $\beta$-1,4-D-arabinogalactanase from Alkalophilic Bacillus sp. HJ-12)

  • 신해헌;변유량
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.710-716
    • /
    • 1995
  • $\beta $-1, 4-D-arabinogalactanase isolated from alkalophilic Bacillus sp. HJ-12, approximate Mw 42 kDa, was generally stable in the range of pH 6-10 and below 50$\circ$C and its highest activity was observed at 60$\circ$C with pH 7-9. The isolated $\beta $-1, 4-D-arabinogalactanase specifically hydrolyzed $\beta $-1, 4-galactosyl linkage that is the major structure of soybean arabinogalactan (SAG) but not $\beta $-1, 3-galactosyl linkage of the other polysaccharides. K. was estimated as 0.67 mg/ml by the method of Hanes-Woolf plot. No metals and chemical reagents inhibited the enzyme activity but urea did. The active site of this enzyme assumed to be tryptophan residue. The hydrolysis products from SAG, assayed by gel chromatography, TLC and HPLC, were predominantly galactotetraose (Gal$_{4}$) and triose (Gal$_{3}$) with a small portion. $\beta $-1, 4-D-arabinogalactanase hydrolyzed ONPG as well as SAG, and the degree of hydrolysis of SAG was 15% which is lower than that by the other $\beta $-1, 4-galactanases from different sources. SAG treated with this enzyme resulted in the reduction of specific viscosity up to 70%.

  • PDF

알카리성 Bacillus sp.의 호알카리성 amylase 유전자의 Bacillus subtilis와 Escherichia coli로의 cloning과 발현 (Molecular Cloning and Expression of Alkaline Amylase Gene of Alkalophilic Bacillus sp. in Bacillus subtilis and Escherichia coli)

  • Bae, Moo;Park, Shin-Hae
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.160-164
    • /
    • 1989
  • 알카리성 Bacillus sp. AL-8의 알카리성 amylase 유전자를 포함하는 5.7Kb의 EcoRI 단편을 pUB 110을 vector로 하여 amylase를 생산하지 못하는 B. subtilis sta-1에서 발현시켰다. 재조합 plasmid pMB802와 pMB809는 숙주세포인 B. subtilis에서 매우 안정하게 유지되었으며 amylase 생산이 공여균 주에서 보다 1.8배 증가하였다. 형질전환주에서 생산된 amylase는 공여균주와 같은 효소적 성질을 나타내었다. 5.7Kb 단편을 E. coli에 subcloning한 결과 3.7Kb의 EcoRI 단편에 알카리성 amylase 유전자가 존재하였다.

  • PDF