• Title/Summary/Keyword: alkaloid biosynthesis

Search Result 14, Processing Time 0.015 seconds

Effects of Liriodenine on Dopamine Biosynthesis in PC12 Cells (Liriodenine이 PC12 세포중의 Dopamine 생합성에 미치는 영향)

  • Jin, Chun-Mei;Lee, Jae-Joon;Yin, Shou-Yu;Kim, Yu-Mi;Kim, Young-Kyoon;Rhu, Shi-Yong;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.55-59
    • /
    • 2003
  • The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine content in PCl2 cells were investigated. Treatment of PC12 cells with liriodenine decreased dopamine content in a dose-dependent manner (33.6% inhibition at $10\;{\mu}M$ for 12 h). The $IC_{50}$ in value of liriodenine was $8.4\;{\mu}M$. Dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine. Under these conditions, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase were also inhibited at $10\;{\mu}M$ of liriodenine by 10.1% and 20.2% relative to control, respectively. In addition, liriodenine inhibited the increase in dopamine content induced by L-DOPA Treatments $(50-100\;{\mu}M)$ in PC12 cells. These results suggest that liriodenine inhibited dopamine biosynthesis and L-DOPA-induced increase in dopamine content by reducing the activities of tyrosine hydroxylase and aromatic L- amino acid decarboxylase in PC12 cells.

Effects of Cyclobuxine D on the Biosynthesis of Prostaglandins in Vitro, Prostaglandins Production and Leukocyte Migration in Vivo (Cyclobuxine D의 prostaglandin 합성과 백혈구 유주에 미치는 영향)

  • Lee, Jong-Hwoa;Park, Young-Hyun;Cho, Byung-Heon;Kim, Yu-Jae;Kim, Jong-Bae;Kim, Chung-Mok;Kim, Chun-Sook;Cha, Young-Deog;Kim, Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.51-56
    • /
    • 1987
  • Cyclobuxine D was extracted from Buxus microphylla var. koreana Nakai. The effects of cyclobuxine D on the biosynthesis of prostaglandins from arachidonic acid in guinea pig lung, prostaglandin production and leukocyte migration in carrageenin-induced inflammation was investigated. These effects of cyclobuxine D were compared with those of aspirin and dexamethasone. Cyclobuxine D does not inhibit significantly cyclooxygenase in guinea pig lung but reduces prostaglandin concentration and leukocyte migration in inflammatory exudates. These effects of cyclobuxine D differ from that of aspirin which inhibits biosynthesis of prostaglandin in vitro and has a relative small effect on leukocyte migration. Dexamethasone, which does not inhibit cyclooxygenase in vitro, has an effect similar to that of cyclobuxine D on leukocyte migration and prostaglandin production in inflammatory exudates.

  • PDF

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

Molecular cloning and characterization of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (CaHDR) from Camptotheca acuminata and its functional identification in Escherichia coli

  • Wang, Qian;Pi, Yan;Hou, Rong;Jiang, Keji;Huang, Zhuoshi;Hsieh, Ming-shiun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • Camptothecin is an anti-cancer monoterpene indole alkaloid. The gene encoding 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (designated as CaHDR), the last catalytic enzyme of the MEP pathway for terpenoid biosynthesis, was isolated from camptothecin-producing Camptotheca acuminata. The full-length cDNA of CaHDR was 1686 bp encoding 459 amino acids. Comparison of the cDNA and genomic DNA of CaHDR revealed that there was no intron in genomic CaHDR. Southern blot analysis indicated that CaHDR belonged to a low-copy gene family. RT-PCR analysis revealed that CaHDR expressed constitutively in all tested plant organs with the highest expression level in flowers, and the expression of CaHDR could be induced by 100 ${\mu}M$ methyl-jasmonate (MeJA), but not by 100 mg/L salicylic acid (SA) in the callus of C. acuminata. The complementation of CaHDR in Escherichia coli ispH mutant MG1655 demonstrated its function.