• Title/Summary/Keyword: alkaline rock

Search Result 89, Processing Time 0.017 seconds

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: II. Mineralogy and Geochemistry (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: II. 광물 및 지구화학)

  • Kim In-Joon;Lee Gyoo Ho;Cho Deung-Lyong;Lee Seung-Ryeol;Lee Sa-Ro
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.459-475
    • /
    • 2004
  • The geology of the Kualakulun area in Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Sepauk Plutonic rocks are classified as the calc-alkaline series and the S-type granite. Sintang Intrusive rocks are basic-intermediate and intermediate rocks, and consists of basalt, basaltic andesite, basaltic trachyandesite and trachyandesite. The Malasan Volcanics are characterized by intermediate dacitic pyroclasticl and minor lavas and belong to the subalkaline (calc-alkaline and tholeiitic) series. The whole-rock K-Ar ages of the fine-grained biotite granites and medium-grained granitoids were determined to be 100.5-106.5 Ma and 91.9-102.6 Ma, respectively. The whole-rock K-Ar age of the diorite is 89.1 Ma. K-Ar ages of the Malasan Volcanics and Shintang intrusives show 31.5-36.8 Ma and 24.6-34.5 Ma, respectively, and correspond to the Tertiary time.

Zircon Morphology and Petrochemistry of Mesozoic Plutonic rocks in Seonsan Area, Korea (선산 지역 중생대 심성암류의 저어콘 헝태 및 암석화학)

  • 이윤종;박순자;장용성;정원우;김중욱;황상구;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.81-102
    • /
    • 2004
  • The plutonic rocks in Seonsan area are divided into dioritic-syenitic rock, gneissose granite, biotite granite and fine grained biotite granite. These rocks intruded into the Pre-cambrian metamorphic complex and are all covered by the Cretaceous Nakdong formation. According to modal minerals, dioritic-syenitic rock corresponds to quartz monzonite, granodiorite, tonalite fields, whereas all the other plutonic rocks fall in granite field. Petrochemically the dioritic-syenitic rock is lower in SiO$_2$ content, differentiation index and Larsen index than all the other plutonic rocks. About the zircon morphology, dioritic-syenitic rock shows (100) dominant type but other granitic rocks exhibit mixed types between (100) and (110) type. The dioritic-syenitic rock could be crystallized in higher temperature than the other plutonic rocks. The plutonic rocks correspond to calc-alkaline rock series, and belong to I-type granite and mostly magnetite-series in magmatic origin. In plutonic processes, the dioritic-syenitic rock with 5kb vapor pressure could intrude into the metamorphic batement at 17km deep below the surface. Later the gneissose granite with lower 3kb vapor pressure could intrude at 10km deep. Sequentially the biotite granite with 0.7kb could intrude at 2km deep. Finally the fine grained biotite granite with 3kb vapor pressure could intrude at 10km deep.

Alkaline Phosphatase Activity in Two Geologically Different Streams in Alabama, U.S.A. (미국 알라바마에서 지질학적으로 다른 두 하천의 Alkaline Phosphatase 활성도)

  • Joo, Gea-Jae;Ward, Amelia K.
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.1-15
    • /
    • 1995
  • Alakline phosphatase activity (AP A) as a phosphorus deficiency measurement in flowing waters and of microhabitats (rocks, wood, leaves, and sediments) was measured and its relationship to flux of nutrients and response to rainfall events were determined for two geologically different streams in west Alabama from August to November. Results indicated water column AP A in both streams had a low correlation with levels of orthophosphate, total organic phosphorus, nitrate, ammonia, dissolved organic carbon, and discharge (r=0.075-0.583; n=g-IU. Communities on rock surfaces showed a higher AP A level than those on wood and leaves. Sediment passed through a $106{\mu}m$ sieve showed 2-9 times higher AP A level than material passed through $425{\mu}m$ sieve. The first storm after drought at Yellow Creek introduced substantial quantities of DOC (2.5 times baseflow concentrations) and $N0_3-N$ (5.8 times baseflow concentrations) which did not affect AP A significantly. The second storm at Little Schultz Creek caused minor changes in nutrient cocentrations; however $N0_3-N$ levels and AP A were drastically lower due to the dilution effect. Retention of stream water AP A at Yellow Creek and Little Schultz Creek on $0.45{\mu}m$ filter (54 and 43%, respectively) and $0.22{\mu}m$ (83 and 77% of total APA. respectively) indicated more free dissolved portion of the enzyme was present at Little Schultz Creek. Little Schultz Creek (with carbonate and with a higher productivity and biomass) showed a consistantly greater AP A activity $(132{\pm}54\;{\mu}M{\cdot}1^{-1}{\cdot}min^{-I};\;n=g)$ than Yellow Creek $(41{\pm}23\;{\mu}M{\cdot}1^{-I}{\cdot}min^{-I}$, with a sandstone substrate; n=l1, $p{\leq}O.OO1)$. Overall, a greater APA on all microhabitats and the presence of more dissolved enzyme in Little Schultz Creek during the study period may indicates it is more P deficient than Yellow Creek.

  • PDF

Occurrence of Vanadium in Groundwater of Jeju Island, Korea (제주도 지하수 내 바나듐의 산출 특성)

  • Hyun, Ik-Hyun;Yun, Seong-Taek;Kim, Ho-Rim;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1563-1573
    • /
    • 2016
  • The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of $0.2{\sim}71.0{\mu}g/L$ (average, $12.0{\mu}g/L$) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions ($Cl^-$, $Na^+$, and $K^+$) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with $NO_3-N$ concentration. The high concentrations of vanadium (>$15{\mu}g/L$) occurred in typically alkaline groundwater with high pH (${\geq}8.0$), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of $Na-Ca-HCO_3$, $Na-Mg-HCO_3$ and $Na-HCO_3$ types and were remarkably lower in groundwater of $Na-Ca-NO_3$(Cl) type that represented the influences from anthropogenic pollution.

Determination of Rare Earth Elements in USGS Geological Materials by ICP/AES (ICP/AES에 의한 지질시료 중의 희토류원소 분석)

  • 김정석;최광순;박용준;지광용
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.2
    • /
    • pp.28-81
    • /
    • 1995
  • Inductively coupled plasma atomic emission spectrometry was used for the determination of all 14 rare earth elements (REE) in geological materials. Samples were decomposed by using acid digestion followed by alkaline fusion. Group separation of the REE was achieved by solvent extraction with TOPO (trioctylphosphine oxide) and back extraction into HCl. The results for standard rock sample, AGV-1, showed a good agreement with those obtained by US Geological Survey as well as reported values in other articles.

  • PDF

Low-Sulfidation Epithermal Gold Deposits in East China: Characteristics, Types, and Setting

  • Mao, Jing-Wen;Li, Xiao-Feng;Zhang, Zuo-Heng
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.15-18
    • /
    • 2003
  • We preliminarily describe the basic characteristics of the low-sulfidation epithermal gold deposits in East China. It can be divided into granite- and alkaline rock-related types. These gold deposits are structurally controlled by caldera, craters, diatremes and related faults, hosted in volcanic rocks, and characterized by alterations of adularia, chalcedony, quartz, sericite and calcite assemblages. The ore-forming ages are within three pulses of 180-188 Ma, 135-141 Ma, and ca. 120 Ma, which are geodynamically corresponding the collision orogenic process between North China and Yangtze cratons, transformation of the tectonic regime, and delamination of the lithosphere, respectively.

  • PDF

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong (통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화)

  • Hwang, Sang Koo;Lee, So Jin;Ahn, Ung San;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.121-138
    • /
    • 2018
  • We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

Sr-Nd-Pb Isotopic Compositions of Lavas from Cheju Island, Korea (제주도 화산암류의 Sr-Nd-Pb 동위원소 연구)

  • 박준범;박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 1996
  • Sr, Nd and Pb isotopic characteristics of alkaline lavas and tholeiites in Cheju Island show that the isotopic compositions of the former slightly overlap, but have relatively more depleted than the latter. However, in viewpoint of the two eruptional stratigraphies of tholeiites, the isotopic compositon of the older one is similar to those of alkaline rocks in Lava Plateau Stage after Lee (1982). These suggest that the parental magmas of alkaline lavas and tholeiites might have originated from the homogenous mantle sourve and that the characteristics of the mantle source to be partially melted might be different between the eruption stages. The isotopic signatures of the bolcanic rocks in Cheju Island overlap with those in Samoa Islands and South China Basin, indicating the DMM-EM IImixing trend. This is distingushed from the DMM-EM I trend of the Cenozoic volcanic rocks in Korea except for cheju Island and Northeastern China. The modelled binary mixing calculation between MM and EM IImaterials indicates that the mantle source of the volcanic rocks in Cheju Island has been mixed about less than 10% of enriched mantle material (EM II) with depleted mantle material (DMM). Concerned with the indentation model between North China Block (NCB) and South China Block (SCB) after Yin an Nie (1993), we suggest that the distinct isotopic features of DMM-EM I and DMM-EM IIof the Cenozoic volcanic rock in Korea as well as China can be explained by the difference of the nature of subcontinental lithospheric mantle as enriched mantle materials, i.e. EM I of NCB, while EM II of SCB.

  • PDF

Occurrence and chemistry of pyrochlore and baddeleyite in the Sokli carbonatite complex, Kola Peninsula, Arctic

  • Lee, Mi-Jung;C. Terry Williams;Lee, Jong-Ik;Kim, Yeadong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.67-67
    • /
    • 2003
  • The chemical compositions and textural relationships of the Nb-Zr oxide minerals including pyrochlore [ideally (Ca,Na)$_2$Nb$_2$O$\sub$6/(OH,F), with up to 24% UO$_2$ and 16% Ta$_2$O$\sub$5/] and baddeleyite [ideally ZrO$_2$, with up to 6% Nb$_2$O$\sub$5/] in the Sokli carbonatite complex, Kola Peninsula, Arctic are described. These two minerals in carbonatites are the major hosts for the HFSEs such as U, Th, Ta, Nb, Zr and Hf and thus are interest both economically and petrologically. The Sokli carbonatite complex (360-370 Ma) in Northern Finland, which forms a part of the Paleozoic Kola Alkaline Province (KAP), is mainly composed of multi-stages of carbonatite and phoscorite associations (P1-C1 P2-C2, P3-C3, D4 and D5) surrounded by altered ultramafic rocks (olivinite and pyroxenite) and cut by numerous small dikes of ultramafic lamprophyre. The Sokli complex contains the highest concentration in niobium and probably in tantalum, which are economically very important to modern steel technology, among the ultramafic-alkaline complexes of the KAP. Pyrochlore and baddeleyite mostly concentrate in the phoscorites. Pyrochlores in the Sokli complex are generally rounded octahedra and cubes in shape, red brown to grey yellow in color, and 0.2 to 5 mm in size. They are found in all calcite carbonatites, phoscorites and dolomite carbonatites, except P1-C1 rocks. These pyrochlores display remarkable zonations which depend on host rock compositions, and have significant compositional variations with evolution of the Sokli complex. The common variation scheme is that (1) early pyrochlore is highly enriched in U and Ta; (2) these elements decrease abruptly in the intermediate stage, while Th and Ce increase, and (3) late stage pyrochlore is low in U, Ta, Th, and Ce, and correspondingly high in Nb. Baddeleyites in the Sokli complex occur in the early P1-C1 and P2-C2 rocks and rarely in P3. They crystallized earlier than pyrochlores, and occasionally show post-magmatic corrosion and replacement. The FeO and TiO$_2$ contents of baddeleyites are much lower than those of the other terrestrial and lunar baddeleyites, whereas Nb$_2$O$\sub$5/ and Ta$_2$O$\sub$5/ contents are the highest among the reported compositions. Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites decrease towards later stage facies, which is in accordance with the whole rock compositions. The variation of Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites is considered to be a good indicator to trace an evolution of the carbonatite complexes.

  • PDF

Axial Seamount Basalts in P3 Segment of Phoenix Ridge, Drake Passage, Antarctica: K-Ar Age Determination and Geochemistry (남극 드레이크 해협 피닉스 해령 P3구역 축부 해저현무암: K-Ar 연대측정과 지구화학)

  • Lee, Jong-Ik;Hur, Soon-Do;Lee, Mi-Jung;Kim, Kyu-Jung;Nagao, Keisuke
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The axial seamount basalts in the P3 segment of the Phoenix Ridge were obtained from dredging and the K-Ar age determination and whole-rock geochemical analyses have been done for understanding their origin. The K-Ar ages for PRS basalts sampled from 1,000m below sea level are 2.6-2.2 Ma and those for PR3 basalts from 800m are 1.6-1.5 Ma. The younger ages towards the crest of the seamount indicate that this submarine volcano has been grown by central eruptions. The youngest age of about 1.5 Ma for PR3 basalts corresponds to the final eruption period of this volcano. The seamount basalts contain small amounts of normative quartz and olivine. They have transitional geochemical nature between alkaline- and subalkaline-series basalts. Trace and rare earth elements compositions of the seamount basalts are very similar to those of ocean island basalts (OIB), and indicate that this seamount has been formed by a hotspot activity, not in association with a seafloor spreading. The melting degree from the source has decreased with time, and finally the volcanic activity has stopped when the basaltic magma reached mild alkaline composition.