• Title/Summary/Keyword: alkaline protease APL 440

Search Result 2, Processing Time 0.018 seconds

Processing of Pen Shell By-product Hydrolysate Using Response Surface Methodology (반응표면분석법에 의한 키조개 부산물 단백질 가수분해물의 제조조건)

  • Cha, Yong-Jun;Kim, Eun-Jeong;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.958-963
    • /
    • 1995
  • The hydrolysis of pen shell by-product by the APL $440^{TM}$, selected as the suitable alkaline protease on the basis of cost per unit enzyme activity, was optimized using response surface methodology(RSM). A model equation obtained from the results of RSM could be used for the prediction of degree of hydrolysis(DH) as follows: $%DH=51.126+2.419\;pH+2.415T-2.426S-2.846pH^2-4.211T^2-3.014t^2+2.419S^2$. From the ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 10.2, $61.4^{\circ}C$, 2.58 hrs reaction time, 30.9% substrate concentration, and 0.32% enzyme/substrate ratio. The effect of autolysis affecting degree of hydrolysis in pen shell by-product was negligible. Hydrolysate produced under the optimal condition increased 3.5 times and 7.7 times in amino nitrogen and salinity, respectively, comparing with raw pen shell by-product.

  • PDF

Development of Blue Musel Hydrolysate as a Flavouring

  • Cha, Yong-Jun;Kim, Hun;Kim, Eun-Jeong
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 1998
  • The hydrolysis conditions of blue mussel were evaluated by response surface methodology(RSM) for the alkaline protease Optimise TM APL-440 . Conditions favoring the highest degree of hydrolysis in blue mussel were pH 9,8, 58$^{\circ}C$ reaction temperature, 2,9 hrs reaction time, 46.8%(w/v) substrate concentration, and 0.34%(v/w) enzym $e_strate ratio. Levels of n-3 fatty acids, e.g.C18 : 3, C18 : 4, and C20 : 5, did not change after hydrolysis in blue mussel sample.le.

  • PDF