• Title/Summary/Keyword: alkaline manganese cell

Search Result 6, Processing Time 0.021 seconds

Status of the Rechargeable Alkaline Manganese Battery Technology (충전용 알칼리 망간 전지 기술 현황)

  • Bang Bu Gil
    • 한국전기화학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.137-146
    • /
    • 1999
  • The rechargeable alkaline manganese dioxide(RAM)battery system has reached a performance level that enables the consumer to utilize RAM for practically all applications where currently single use cells(alkaline manganese, zinc-carbon)are being used. In addition, it can replace nickel-cadmium and nickel-metal hydride cells in low to medium power applications with much improved charge retention at higher operating temperatures and in intermittent use and works well with solar charging. A review is given on RAM cell performance as well as a comparison to competing rechargeable technologies. Potential new possibilities in the field of OEM(original equipment manufacturer) applications are discussed.

  • PDF

Survey on rechargeable battery of MnO2-Zn using aqueous solution (수용성 전해질을 이용한 이산화망간 2차 전지에 대한 고찰)

  • Park, S.J.;Shin, H.S.;Kim, Y.C.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • Manganese dioxide is the material which has a good characteristic property for a secondary cell. We have surveyed on rechargeable battery of zink-manganese dioxide using aqueous solution and we also surveyed on redox reversibility of zink-manganese dioxide for checking up possibility for a secondary cell. We have found out to be active for charging and discharging of those.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

Preparation of Electrolyte Membranes for Thin Manganese Batteries and Its Electrochemical Characteristics (박형 망간전지용 전해질막의 제조 및 전기화학적 특성)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1292-1295
    • /
    • 2006
  • Three kinds of electrolyte membranes were prepared by impregnating filter papers with one of the electrolyte solutions fur primary manganese battery ($NH_4Cl$, $ZnCl_2$, and alkaline types) and hygroscopic agent ($CaBr_2$ or $CaCl_2$), respectively. The thickness of them was $250{\sim}300{\mu}m$, and they were very flexible. The electrochemical characteristics greatly depended on the hygroscopic agent to supply water to the cell. The electrolyte membrane containing $CaCl_2$ showed the highest ionic conductivity and the largest discharge capacity.

  • PDF

Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

  • Guha, Anirban;Gera, Sandeep;Sharma, Anshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and $SCC\geq2{\times}10^5$ cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

Ethylene Biosynthesis of an Alkalophilic Bacillus sp. Alk-7 (알카리성 Bacillus sp. Alk-7에 의한 Ethylene 생합성과 그 경로)

  • Bae, Moo;Kim, Mi-Ye
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.195-199
    • /
    • 1998
  • AH alkalophilic Bacillus SP. AIk-7, isolated from soil, produced ethylene. The characteristics of this microorganism is the ability to grow well under the alkaline condition, at pH 10.3. This strain is similar to Bacillus alkalophilus in terms of morphological, physiological and biological characteristics. In observation of relationship of cell growth and ethylene production according to incubation times, the ethylene synthesis mostly occur from the late exponential phase to the death phase of growth. The purpose of this paper is to study the effects of various substrates on the biosynthesis of ethylene in the intact cell and the cell-free system by the Bacillus sp. AIk-7. In both intact cell and cell-free extract, optimum conditions for ethylene production was achieved at pH 10.3 and 3$0^{\circ}C$. Ethylene was effectively produced from L-Met and 1-aminocyclopropane-1-carboxylic acid (ACC). In this case, ACC as the substrate on ethylene production were two fold higher than L-met at each concentration of substrates. On the other hand, the cell-free ethylene-forming system was used as a tool for the elucidation of the biochemical reaction involved in the formation of ethylene by Bacillus sp. AIk-7. Ethylene production in the cell-free system required the presence of manganese and cobalt ion to be stimulated a little. The result obtained in this work suggests that L-met and ACC may be a precursor more directly related to bacterial ethylene production than any other substrates tested.

  • PDF