• Title/Summary/Keyword: alkaline invertase

Search Result 14, Processing Time 0.023 seconds

Effect of Plant Hormones on the Invertase Activity in the Senescing Leaves of Phaseolus radiatus

  • Lee, Dong-Hee;Lee, Chin-Bum;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • Effect of plant hormones on the leaf senescence of mung bean (Phaseolus radiatus) was investigated by measuring the changes of reducing sugar contents and invertase isozyme activities in detached leaves treated with NAA, $GA_3$ or BA. During dark-induced senescence, reducing sugar contents in the detached leaves increased temporarily at 4 d, thereafter decreased rapidly and reached minimum values within 7-14 d. The pattern of soluble acid invertase activity in the senescing leaves kept in the dark was similar to that of reducing sugar accumulation, whereas the activities of alkaline and extracellular invertases were not significantly changed during leaf senescence. Therefore, these results suggest that soluble acid invertase, but not alkaline and extracellular invertases, induces the accumulation of reducing sugar during leaf senescence of mung bean plants. Exogenous NAA application had little or no effect in the increase of soluble acid invertase activity during dark-induced senescence compared to the control. However, exogenous applications of $GA_3$ and BA led to the increase of soluble acid invertase activity in the senescing leaves. Particularly, BA application was very effective in enhancing the activity of soluble acid invertase as well as in delaying chlorophyll breakdown during dark-induced senescence. These results suggest, therefore, that BA regulates the activity of soluble acid invertase, which leads to the accumulation of reducing sugar, and the stability of photosynthetic apparatus to delay leaf senescence.

  • PDF

Effect of Plant Hormones on the Invertase Activity in the Senescing Leaves of Phaseoius radiatus

  • Dong Hee Lee;Chi
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1993
  • Effect of plant hormones on the leaf senescence of mung bean (Phseoln radiatus) was investigated by measuring the changes of reducing sugar contents and invertase isozyme activities in detached leaves treated with NAA, $GA_3$ or BA. During dark-induced senescence, reducing sugar contents in the detached leaves increased temporarily at 4 6, thereafter decreased rapidly and reached minimum values within 7-14 6. The pattern of soluble acid invertase activity in the senescing leaves kept in the dark was similar to that of reducing sugar accumulation, whereas the activities of alkaline and extracellular invertases were not significantly changed during leaf senescence. Therefore, these results suggest that soluble acid invertase, but not alkaline and extracellular invertases, induces the accumulation of reducing sugar during leaf senescence of Rung bean plants. Exogenous NAA application had little or no effect In the increase of soluble acid invertase activity during dark-induced senescence compared to the control. However, exogenous applications of $GA_3$ and BA led to the increase of soluble acid invertase activity in the senescing leaves. Particularly, BA application was very effective In enhancing the activity of soluble acid invertase as well as in delaying chlorophyll breakdown during dark-induced senescence. These results suggest, therefore, that BA regulates the activity of soluble acid invertase, which leads to the accumulation of reducing sugar, and the stability of photosynthetic apparatus to delay leaf senescence.

  • PDF

Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.) (녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF

Effect of Growth Retardants on Growth and Invertase Activity of Sedirea japonica Seedlings in vitro (생장억제제 처리가 나도풍란(Sedirea japonica) 유묘의 생장과 invertase 활성에 미치는 영향)

  • Jee Sun Ok;Cho Dong Hoon
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.499-504
    • /
    • 2005
  • This experiment was conducted to identify the effect of several plant growth retardants on growth of Sedirea japonica seedlings cultured in vitro and their changes of invertase activities. When seedlings of Sedirea japonica were treated with ancymidol and paclobutrazol, as the concentrations were increased, leaf length was gradually shortened and leaf width became wider than that of control. On the other hand, root length was shorter, but the number of root and the root's diameters were greatly increased, compared with control. In 0.05mg/L uniconazole, growth of leaf and root were enhanced, compared with the control and higher concentrations of uniconazole. As concentration of each growth retardants was increased, leaf shape became round and smaller. Both soluble acid invertase activity and soluble alkaline invertase activity in leaf were decreased in higher concentrations of each growth retardant, but those of the root were contrary to those of the leaf. To confirm the estimated invertase activities, starch content of leaf was higher in low concentration treatments in each growth retardant, but in the root was contrary to content that of the leaf.

Changes of Sucrose Content and Invertase Activity in Leaves of Barley Seedlings under Low Temperature (저온 처리한 보리 유식물 잎의 설탕함량과 Invertase의 활성변화)

  • 이명애
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.91-95
    • /
    • 1992
  • Changes of contents of reducing sugar and sucrose and activities of sucrose-phosphate synthase, sucrose synthease and invertase from the leaves of barley (Hordeum vulgare L. cv. Chalssal) seedlings grown at $4^{\circ}C$ were investigated, and the property of acid invertase were also examined. In the seedlings grown at $4^{\circ}C$ for 3 days, the contents of reducing sugar and sucrose were increased to 1.3 and 2.4 times, respectively. Activity of acid invertase was decreased markedly by cold treatment while the activities of sucrosephosphate synthase, sucrose synthase, and alkaline invertase were not changed. In acid phosphatase purified partially by ammonium sulfate fractionation and DEAE-Sephacel column chromatography, the $K_m$ value for sucrose was 9.5 mM and the optimum pH and temperature was 5.5 and $35^{\circ}C$ respectively. This enzyme was supposed to be ${\beta}-fructosidase$ by studies on the substrate specificity and the molecular weight was estimated to be 63 Kd by Sephadex G-200 gel chromatography.graphy.

  • PDF

Characterization of Neutral Invertase from Fast Growing Pea (Pisum sativum L.) Seedlings after Gibberellic Acid (GA) Treatment (GA 처리 후 급 성장하는 완두콩(Pisum sativum L.) 발아체로부터 분리된 중성 invertase의 특성)

  • Kim, Donggiun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1021-1026
    • /
    • 2015
  • Invertase (β-D-fructosfuranosidase, EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Three biochemical subgroups of invertases have been investigated in plants: vacuolar (soluble acid), cytoplasmic (soluble alkaline), and cell wall-bound (insoluble acid) invertases. An isoform of neutral invertase was purified from pea seedlings (Pisum sativum L.) and treated with gibberellic acid (GA) by sequential procedures consisting of ammonium sulfate precipitation, ion-exchange chromatography, absorption chromatography, and reactive green-19 affinity chromatography. The results of the overall insoluble invertase purification were a 430-fold increase. The purified neutral invertase was not glycosylated and had an optimum pH between neutral and alkaline (pH 6.8-7.5). It was inhibited by Tris, as well as by heavy metals, such as Hg2+ and Cu2+. Typical Michaelis–Menten kinetics were observed when the activity of the purified invertase was measured, with sucrose concentrations up to 100 mM. The Km and Vmax values were 12.95 mM and 2.98 U/min, respectively. The molecular mass was around 20 kDa. The sucrose-cleaving enzyme activity of this enzyme is similar to that of sucrose synthase and fructosyltransferase, but its biochemical characteristics are different from those of sucrose synthase and fructosyltransferase. Based on this biochemical characterization and existing knowledge, neutral INV is an invertase isoform in plants.

Characterization of Carbohydrate Metabolism during Dark-Induced Senescence

  • Kim, Young-Sang;Chang, Ji-Young;Lee, Dong-Hee
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • To investigate the changes of carbohydrate metabolism in the senescing leaves of Zea mays during dark-induced senescence, the changes in the contents of reducing sugar, sucrose and starch as well as the activities of sucrose synthase, three isozymes of invertase, and ${\alpha}$-amylase were measured. In the senescing leaves, the content of reducing sugars temporarily increased at 4 d and rapidly decreased thereafter, whereas sucrose contents gradually decreased thereafter, whereas sucrose contents gradually decreased until 3 d of senscence and significantly decreased thereafter. The activities of intracellular invertases such as soluble acid and alkaline formed gradually enhanced until 4 d of leaf senescence and significantly declined thereafter. The extracellular invertase activity showed no significant changes during leaf senescence. The deactivation of sucrose synthase was observed within 3 d of leaf senscence. On the other hand, the starch contents gradually declined during 2 d of leaf senescence, and showed a temporary increase at 3 d, which is similar to the pattern of sucrose synthase activity., These results imply that sucrose in the senescing leaves. The major enzymes which correlated to the breakdown of sucrose during dark-induced senescence were soluble acid and alkaline invertases, not sucrose and ABA accelerated leaf senescence by inducing the accumulation of reducing sugar. These result, therefore, that leaf senescence may be mediated by the temporary quantitative changes of reducing sugar induced by the activation of intracellualr inveertases.

  • PDF

Alteration of Carbohydrate Metabolism in Rice Seedlings under Low Temperature (저온 처리한 벼 유식물에서 탄수화물 대사의 변화)

  • 홍순복
    • Journal of Plant Biology
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 1991
  • The contents of reducing sugar, sucrose, starch and fructose-2,6-bisphosphate (F-Z,$6-P_2$) in relation to the activities of amylase, invertase and fructose-1,6-bisphosphatase (FBPase) were investigated from the leaves of rice (Oryza sativa L. cv. Samjin) seedlings grown at $4^{\circ}C$ for 3 days_ In the seedlings, the contents of reducing sugar and sucrose were increased, but soluble and insoluble starch were declined. Under this condition, amylase activity was increased. but acid invertase activity was declined and alkaline invertase activity was not changed. Cytosolic and stromal FBPase activities were increased. But F-2,$6-P_2$ content was declined. It seemed that the increase of reducing sugar content might be due to the increased activity of amylase and the increase of sucrose content might be related to the increased activity of cytosolic FBPase, reduced content of F-Z,$6-P_2$ and reduced rate of hydrolysis of sucrose during the cold treatment. These results suggested that the changes in carbohydrate rnetabolim of rice seedlings under low temperature reflect one of the protection mechanism to the low temperature during the cold treatment.atment.

  • PDF

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF