• Title/Summary/Keyword: alkaline hydrogen peroxide

Search Result 60, Processing Time 0.04 seconds

Enzymatic Hydrolysis of Pre-treated Ulva pertusa with Alkaline Peroxide (구멍갈파래의 알칼리 과산화수소 전처리 및 효소 가수분해 특성)

  • Yoon, Byung-Tae;Kim, Young-Wun;Chung, Keun-Wo;Kim, Jin-Seog
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.336-339
    • /
    • 2011
  • Algae is an abundant and potential fermentation substrate. The enzymatic hydrolysis of algae was investigated by pre-treating an alkaline hydrogen peroxide with commercial cellulase and viscozyme. Algae used in this study was the Ulva pertusa. The evaluated response was the yield of released glucose after the enzymatic hydrolysis. Alkaline hydrogen peroxide containing mixtures of 1 wt% hydrogen peroxide and 1~1.75 wt% sodium hydroxide was also used. The results show that the highest glucose conversion was obtained for Ulva pertusa using 5 wt% hydrogen peroxide at $60^{\circ}C$ for 3 h. The required amount of enzymes after the pre-treatment with alkaline hydrogen peroxide were reduced by far compared to that of untreated Ulva pertusa. Also, the amount of glucose that is released during the enzymatic hydrolysis was increased.

ALKALINE HYDROGEN PEROXIDE TREATED ASPEN AS A RUMINANT FEED

  • Myung, K.H.;Kennelly, J.J.;Chung, K.C.;Kim, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.4
    • /
    • pp.195-199
    • /
    • 1988
  • Two experiments were conducted to evaluate the nutritive value of a diet containing 20% alkaline hydrogen peroxide(AHP) treated aspen sawdust for ruminants. In experiment 1, sheep fed treated aspen(treated) had higher (p < 0.05) average daily gain and improved feed/gain ratio compared to animals fed untreated aspen (untreated), Apparent NDF and ADF digestibilities of treated aspen were higher (p < 0.05) than for untreated material. A similar trend was observed for DM, organic matter and cellulose digestibilities coefficients. In experiment 2, the soluble and degradable DM and crude protein (CP) fractions tended to increase with AHP treatment. Treatment also increased (p<0.05) the degradation rate of the degradable fraction. Results of these experiment indicate that AHP treatment results in a substantial improvement in the extent of utilization of aspen sawdust by ruminants.

Study of Alkaline Peroxide Mechanical Pulp Made from Pinus densiflora (국내산 소나무로 제조된 APMP 특성 연구)

  • Lee, Ji-Young;Nam, Hyegeong;Kim, Chul-Hwan;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Lee, Min-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.100-110
    • /
    • 2016
  • Alkaline Peroxide Mechanical Pulping (APMP) of Pinus densiflora harvested from domestic mountains was explored. APMP contributes to various advantages including pulp quality, elimination of the need for a bleaching process, and energy savings. Sequential treatment of impregnation of bleaching chemicals and refining not only overcome the concern of alkaline darkening of wood chips during chemical impregnation, but it also brightens the chips to the desired brightness levels suitable for writing and printing papers. APMP pulping from Pinus densiflora was greatly influenced by the dosage levels of hydrogen peroxide and sodium hydroxide. Alkaline peroxide treatment was carried out by applying one of three levels of hydrogen peroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips) and one of three levels of sodium hydroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips). Other chemicals including a peroxide stabilizers and metal chelation were constantly added for all treatments. Chemical treatment with a liquor-to-wood ration of 9:1 was carried out in a laboratory digestor. Compared to BTMP, APMP pulping displayed outstanding characteristics including the less requirement of refining energy, the better improvement of tensile strength, the more reduction of shives, and the greater increase of pulp brightness. In particular, when 4.5% of hydrogen peroxide with impregnation during 90 minutes was used, the brightness of APMP reached 64.9% ISO. Even though bulk of APMP was decreased with the increase of sodium hydroxide, a better and improved balance could be achieved between optical and strength properties. The spent liquor obtained from the discharge of the impregnation process at the dosage level of 4.5% hydrogen peroxide exhibited an equal level of residual peroxide with BTMP. In conclusion, APMP pulping showed successful results with Pinus densiflora due to its better response to the development of optical and physical properties compared to TMP pulping.

The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed (볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준)

  • Choi, Yoon-Hee;Kim, Myeong-Sook;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.320-325
    • /
    • 1994
  • These studies were conducted to investigate the chemical composition changes in in vitro digestibility for the improvement of nutritive value of rice straw by alkaline hydrogen peroxide. The content of neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose and lignin in rice straw was decreased with higher level of $H_2O_2\;(pH 11.5)$. The content of ADF, cellulose and ash of the rice straw washed after $H_2O_2\;(pH 11.5)$ treatment tended to be increased but NDF, hemicellulose and lignin were decreased with higher concentration of $H_2O_2\;(pH 11.5)$. In the rice straw washed after alkaline hydrogen peroxide treatment the decomposition of cellulose and lignin was effective in $pH\;11.5{\sim}12.5$, in smaller cutting size and $55^{\circ}C$. The in vitro organic matter digestibility was increased with higher $H_2O_2$ concentration and smaller cutting size of rice straw.

  • PDF

EFFECT OF ALKALINE HYDROGEN PEROXIDE AND PERACETIC ACID ON IN SACCO RUMINAL DIGESTIBILITY OF ASPEN SAWDUST

  • Myung, K.H.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.635-641
    • /
    • 1992
  • The influence of alkaline hydrogen peroxide (AHP) and peracetic acid treatment on in sacco digestion of aspen was evaluated in three non-lactating ruminally cannulated Holstein cows fed a diet containing 90% forage and 10% concentrate on a DM basis. AHP treatment decreased lignin concentration by 40 to 60% resulting in increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose. Lignin concentrations in peracetic acid treated samples were less than 10% of values for control samples. In sacco disappearance rates of aspen DM, NDF, ADF and cellulose increased (p<.05) with AHP and peracetic acid treatment. Effective degradability of DM, NDF, ADF and cellulose were determined at a ruminal outflow rate of $.05h^{-1}$. Effective degradabilities of AHP treated aspen were approximately three-fold greater and peracetic acid treated samples five-fold greater than untreated control samples. For all parameters measured, peracetic acid treatment resulted in higher (p<.05) digestion coefficients than AHP treated aspen. Results demonstrate that peracetic acid or AHP treatment can enhance the nutritive value of aspen sawdust for ruminants to a level comparable to that reported for many forages.

EFFECT OF ALKALINE HYDROGEN PEROXIDE TREATMENT OF RICE STRAW ON IN SACCO RUMINAL DIGESTIBILITY

  • Myung, K.H.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The objective of this experiment was to compare the effect of pH-regulated alkaline hydrogen peroxide (AHP) treatment of rice straw with those of sodium hydroxide (NaOH) and anhydrous ammonia ($NH_3$) treatments on in sacco digestivility. Three non-lactating ruminally cannulated Holstein cows were fed a diet containing 90% forage and 10% concentrate on a dry matter (DM) basis. The AHP treatment significantly (p<0.05) reduced acid detergent lignin content of the straw, resulting in significant (p<0.05) increase of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose concentrations. Disappearance rates of DM and NDF of the straw significantly (p<0.05) increased at the incubation time of 24 h. On the other hand, those of ADF and cellulose were significantly (p<0.05) higher at the incubation time of 12 h than those of the others. The effective degradability of DM(EDDM), NDF(EDNDF), ADF(EDADF) and cellulose (EDCE) were determined using in sacco nylon bag technique on the basis of 0.05/h solid outflow rate. The greater differences (p<0.05) of EDDM, EDNDF, EDADF and EDCE were found between AHP treated straw and the others. In general, AHP treatment of the straw recorded higher digestion coefficients than untreated straw as well as NaOH and $NH_3$ treated straws. The results of this study demonstrate that AHP treatment can be used as a effective method for improving the nutritive value of rice straw for ruminants.

Modeling and Optimizing Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Wang, Li-Jun;Park, Kyoung-Hwa;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.86-94
    • /
    • 1999
  • Alkaline peroxide bleaching of chemi-mechanical pulp is a very complicated system where various process factors affect the bleacing performance and pulp properties. Traditional onefactor-at a time method is ineffective and costly infinding the optimal bleaching conditions. In this study, statistical experimental design and multiple regression method wre used to investigated the interactions among various bleaching factors and to find out the possbile maximal brightness development during one stage alkaline peroxide bleacing of TMP. The TMP was made from 10% Korean red pine and 90% Korean spruce and had an initial brightness of 54.5% ISO. the TMP was pretreated with EDTA(0.5% on O.D. pulp, 3% pulp consistency, 30$^{\circ}C$ for 60 minutes) and bleached in a 2 L Mark V Quantum Reactor at 750 rmp, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of chemical factors studied , based on oven-ried pulp, were 1-5% for hydrogen peroxide, 1-4% for sodium hydroxide and 1-4% for sodium silicate. The rages of reaction temperature and time were 50-90$^{\circ}C$ and 40-180minutes respectively. Interactions of hydrogen peroxide with alkali , time with temperature ature, alkali with time and silicate with temperature were found to be significant which means that hydrogen peroxide bleaching will be favored at stable concentration of perhydroxyl ion, relatively short time and low temperature, and high level of silicate. Mathematical model which has good predictability for target brightness in one stage peroxide bleaching can also be established easily. Base ion the model, maximal brightness of 70% ISO was found to at 50$^{\circ}C$ and 50 minutes by chemical additions of 5% for hydrogen peroxide, 3.2-3.4% for sodium hydroxide and 4% for silicate based on O.D. pulp. However, this result might not be suitable for situation where furnishes are different from ours, or different pretreatment is used, or bleaching carried out at different pulp consistency. In these cases it will be good to re-investigate the process by a similar methodology as was used in this study.

  • PDF

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additive and Various pH Conditions (II) (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프 표백효과(2)-첨가제가 chlorate 생성량의 감소와 펄프 표백 효과에 미치는 영향)

  • 윤병호;왕립군
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.49-57
    • /
    • 1999
  • In CLO2 delignification and bleaching process, formation of chlorate corresponds to a loss of 20-36% of the original CKO2 charge. Because chlorate is inactive and harmful to environmental, it will be of benefit to find methods that can reduce the formation of chlorate during chlorine dioxide bleaching. Chlorate is mainly formed by the reaction HCIO +ClO2 $\longrightarrow$H+ + Cl_ +ClO3-2 On the other hand, AOX in chlorine dioxide bleacing is formed also due to the in-situ produced hypochlorous acid. THus both AOX and chlorate could be reduced by addition of hypochlorous acid. Some paper son the reduction of AOX by additives appeared , but systematic data on chlorate reduction as well as pulp and effluent properties are not available. THus this paper of focused on the effects on the reduction of chlorate and chlorine dioxide bleachability. The additives, fulfamic a챵, AMSO, hydrogen peroxide, oxalic acid were found to eliminate chlorine selectively in chlorine and chlorine dioxide mixture.However, when they were added to bleaching process, sulfamic acid and DMSO showed significant reduction of chlorate formation but hydrogen peroxide and oxalic aicd did not, and significant amount ofhydrogen peroxide was found resided in the bleaching effluent , In addition, sulfamic acid and DMSO decreased the bleaching end ph values while hydrogen peroxide and oxalic acid did not, which also indicated that hydrogen peroxide and oxalic acid were ineffective. The difference might be ascribed to the competitives of hypochlorous acid with lignin, chlorite (CKO2) and additives. Sulfamic acid and DMSO showed better pulpbrightness development but less alkaline extraction efficiency than hydrogen peroxide , oxalic acid and control, which means that insitu hypochlorous acid contributes to the formation of new chromophore structures that can be easily eliminated by alkaline extraction. DMSO decreased the delignification ability of chlorine dioxide due to the elimination of hypochlorous acid, but sfulfamic acid did to because the chlroinated sulfamic acid had stable bleachability. In addition, sulfamic acid, and SMSO shwed decreased color and COD of bleaching effluents, hydrogen peroxide decreased effluent color but not COD content, and oxalic acid had no statistically significant effects. No significant decreases of pulp viocosity were found except for hydrogen peroxide. Based on our results , we suggest that the effectiveness of hydrogen peroxide on the reduction of AOX in literature might be explained by other mechanisms not due to the elimination of hypochlorous acid , but to the direct decomposition of AOX by hydrogen peroxide.

  • PDF

Chemical and Mechanical Properties of Yellow Poplar Pulp Produced by Formic Acid- Hydrogen Peroxide Pulping (개미산-과산화수소 펄핑에 의하여 생산된 백합나무 펄프의 화학적 및 역학적 특성 분석)

  • Sim, Jaehoon;Kim, Jeong-Ho;Park, Jong-Moon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • TFormic acid-hydrogen peroxide (or performic acid) pulping process needs milder reaction condition than other chemical pulping process. Two-step formic acid-hydrogen peroxide pulping process can produce the chemical pulp with similar pulp yield and lignin content compared with soda-anthraquinone process. Formic acid-hydrogen peroxide pulp can be produced less xylan content than other alkaline pulps, which favor for dissolving pulp production. Formic acid-hydrogen peroxide pulp showed better response beating than soda-anthraquinone(AQ) pulps with reaching target freeness with less beating. Also, formic acid-hydrogen peroxide pulp had better tensile index at similar freeness level compared with soda-AQ pulps.