• Title/Summary/Keyword: alkaline corrosion

Search Result 92, Processing Time 0.031 seconds

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate (Plasma Display Panel용 기판 유리용융체의 내화물 침식)

  • Kim, Ki-Dong;Jung, Hyun-Su;Kim, Hyo-Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Measurement of the Corrosion Rate of Aluminum in Alkaline Solution (알칼리 용액에서 알루미늄의 부식속도 측정)

  • Shim Eun-Gi;Hwang Young-Gi;Chun Hai-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 1999
  • This study investigated the corrosion rate of aluminum in alkaline solution. It was performed to observe the effects of alloy element, alkalinity (KOH concentration), solution temperature, and inhibitor and its concentration in the solution. Among species of aluminum, AA-1050 showed the lowest corrosion rate due to its high purity $(>199\%)$, whereas alloys containing Mg anuor Mn were highly corroded, relatively. The corrosion rate could be reduced over than $50\%$ by saturating the solution with ZnO, while ZnAc did not work as an inhibitor. The inhibition effect of ZnO increased with increasing the alkalinity and solution temperature. It was found that the corrosion rate linearly increased with the concentration of KOH in first order and exponentially decreased with the inverse of the solution temperature. An analysis of the corroded material covered the surface of aluminum was made by SEM and EDS. According to the analytical results by using XRD, it was confirmed that $Al(OH)_3$ was produced from the corrosion of aluminum in KOH solution.

Corrosion Properties of Al-(Ga, Sn, Mn) Alloy Anodes for an Al-air Battery in 4 M KOH Aqueous and Ethanol Solutions (4 M KOH 수용액 및 에탄올 용액에서 알루미늄 공기 전지용 Al-(Ga, Sn, Mn) 합금 음극의 부식 특성)

  • Lee, Han-Ok;Park, Chan-Jin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M.;Lorenzi, S.;Pastore, T.;Pellegrini, S.
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.203-210
    • /
    • 2018
  • This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube (증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동)

  • Shin, Jung-Ho;Lim, Sang-Yeop;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

Corrosion Performance of Al and Zn Coatings Deposited by Arc Thermal Spray Process in 3.5 wt.% NaCl-Contaminated Concrete Pore Solution (3.5wt.% NaCl로 오염된 콘크리트 기공 용액에서 아크 용사 공정에 의해 부착된 Al 및 Zn 코팅의 부식 성능)

  • Singh, Jitendra Kumar;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The corrosion of steel rebar embedded in the coastal areas is corroding once the chloride ions ingress through the pores of the concrete. Therefore, in the present study, a 100 ㎛ thick Al and Zn coating was deposited by an arc thermal spray process onto the steel. The corrosion studies of these deposited coatings were assessed in 3.5 wt.% NaCl contaminated concrete pore (CP) solution with immersion periods. The results show that the Al coating is more corrosion resistance compared to the Zn coating attributed to the formation of gibbsite (γ-Al(OH)3) whereas Zn coating exhibits Zn(OH)2 onto the coating surface as passive layer. The Zn(OH)2 is readily soluble in an alkaline solution. Alternatively, γ-Al(OH)3 on the Al coating surface is less solubility in the alkaline pH, which further provides barrier protection against corrosion.

  • PDF

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Crack-healing Behavior and Corrosion Characteristics of SiC Ceramics (SiC 세라믹스의 균열치유거동 및 부식특성)

  • Hwang, Jin Ryang;Kim, Dae Woong;Nam, Ki Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.10-15
    • /
    • 2013
  • The crack-healing behavior and corrosion resistance of SiC ceramics were investigated. Heat treatments were carried out from $900^{\circ}C$ to $1300^{\circ}C$. A corrosion test of SiC was carried out in acid and alkaline solutions under KSL1607. The results showed that heat treatment in air could significantly increase the strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature was $1100^{\circ}C$ for one hour at an atmospheric level. In the two kinds of solutions, the cracks in a specimen were reduced with increasing time, and the surface of the crack healed specimen had a greater number of black and white spots. The strength of the corroded cracked specimen was similar to that of the cracked specimen. The strength of the corroded crack healed specimen decreased 47% and 75% compared to that of the crack healed specimen in the acid and alkaline solutions, respectively. Therefore, the corrosion of SiC ceramics is faster in an alkaline solution than in an acid solution.

A Study on the Flow-Accelerated Corrosion Characteristics of Galvanically Coupled Dissimilar Metals. (이종금속 연결에 따른 침부식(FAC) 특성에 관한 연구)

  • Kim, Jung-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.269-272
    • /
    • 2000
  • The flow accelerated galvanic corrosion characteristics of a carbon steel coupled to stainless steel were investigated in deaerated alkaline-chloride solutions as a function of flow velocities(0, 0.2, 0.4 and 0.6 m/s), pH(8, 9, and 10) and temperature(25, 50 and $75^{\circ}C$). The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE(Rotating Cylinder Electrode). Carbon steel did not show passive behavior in the alkaline-chloride solution. The galvanic current density increases with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at $25^{\circ}C$, whereas the flow velocity increased galvanic current density significantly at $50^{\circ}C$ and $75^{\circ}C$. This might be due to the increased solubility of magnetite at the higher temperature.

  • PDF