• 제목/요약/키워드: alkaline activator, ambient curing

검색결과 3건 처리시간 0.017초

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay K.;Ashish, Deepankar K.;Parveen, Parveen
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.17-29
    • /
    • 2017
  • Geopolymer concrete is environmentally friendly and could be considered as a construction material to promote the sustainable development. In this paper fly ash based geopolymer concretes with different percentages of alccofine were made by mixing sodium hydroxide and sodium silicate as an alkaline activator and cured at ambient as well as heat environment in an electric oven at $90^{\circ}C$. Effects of various parameters such as the percentage of alccofine, curing temperature, a period of curing, fly ash content, was studied on compressive strength as well as workability of geopolymer concrete. The study concludes that the presence of alccofine improves the properties of geopolymer concrete during a fresh and hardened state of concrete. Geopolymer concrete in the presence of alccofine can be used for the general purpose of concrete as required compressive strength can be achieved even at ambient temperature. The 28 days compressive strength of 73 MPa, when cured at 90-degree Celsius, confirmed that it is also very suitable for precast concrete components.

Development of mix design method for geopolymer concrete

  • Parveen, Parveen;Singhal, Dhirendra
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.377-390
    • /
    • 2017
  • This study proposes a mix design method for geopolymer concrete (GPC) using low calcium fly ash and alccofine, with the focus on achieving the required compressive strength and workability at heat and ambient curing. Key factors identified and nine mixes with varied fly ash content (350, 375 and $400kg/m^3$) and different molarity (8, 12 and 16M) of NaOH solutions were prepared. The cubes prepared were cured at different temperatures ($27^{\circ}C$, $60^{\circ}C$ and $90^{\circ}C$) and tested for its compressive strength after 3, 7 and 28 days of curing. Fly ash content has been considered as the direct measure of workability and strength. The suggested mix design approach has been verified with the help of the example and targets well the requirements of fresh and hardened concrete.