• Title/Summary/Keyword: alkali-treated wood

Search Result 34, Processing Time 0.024 seconds

X-Ray Diffraction Study on the Cellulose Structures in Wood Cell Wall (X선 회절법을 이용한 목재세포벽중의 셀룰로오스의 구조해석)

  • 김남훈;이선호
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • Lignin in wood cell walls influeced the transformation of the cellulose crystal structure during mercerization. Samples of sound and decayed woods by white rot fungus of Quercus mongolica were treated with 20% aquous NaOH solution, followed by washing and drying, and delignified. The effect of delignification on cellulose structure was investigated by a series of an X-ray diffraction analysis and ultraviolet(UV) microscopy. Delignification of alkali-treated woods did not influence their cellulose crystal structures. It may be concluded that lignin prevents the swelling of wood cellulose during mercerization and restrain the intermingling of cellulose chains.

  • PDF

Variation of Oak Kraft Pulp Properties by Xylanase Treatment in C/D, P and Z Stage (C/D, P 및 Z단계 표백시 Xylanase처리에 의한 펄프성질의 변화)

  • Kim, Dong-Ho;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 1997
  • The objectives of this study was to decrease pollutions of bleaching effluent and was to enhanced brightness of non-chlorine bleached pulps by xylanase treatments. Xylanase cloned Esherichacoli(E. coli) capable of each of endo, exo-xylanase and acetyl-esterase were obtained from Bacillus stearothermophillus. These xylanase was maintained high activity in alkali and high temperature. Especially endo-xylanase would be more active in $60^{\circ}C$ and pH 11. Xylanase pretreatment(X) of unbleached pulp increased brightness, and decreased the degree of delignification. The degree of increase in brightness of pulp due to xylanase pretreatment was similar to non-enzyme treated pulp, regardless of the amount of enzyme added. Therefore, the addition of xylanase of 2 unit was recommended when considering costs of enzyme. The pulp bleached XO sequence had higher brightness and lower Kappa no, than O bleached pulp, while pulp bleached XP sequence had similar brightness and Kappa no. with P bleached pulp. In XOC/D, XOZ and XOP bleaching sequences, brightness and degree of delignification were improved. The C/D and Z stage bleached pulp was good effect on rate of raise in brightness and Kappa no., but P stage bleached pulp had similar level in non-enzyme treated bleaching sequence.

  • PDF

A Study on the Preparation of Wood-Plastic Combinations (IV)

  • Kim, Jaerok;Lee, Kyung-Hee;Pyun, Hyung-Chick
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1973
  • Some physical and chemical properties of wood-plastic combinations(W.P.C.) made of domestic soft woods such as pinus densiflora, pinus rigida and poplus deltoides were measured. The rates of improvement in properties were roughly proportional to the contents of polymer or polymer mixtures in W.P.C. For the W.P.C. obtained by means radiation curing and containing 80% of polymer or polymer mixture, the hardness and water absorptirity were improved 2.2 times and 4 times those of the original wood, respectively. The improvement of hardness was especially remarkable in the W.P.C. made of pinus densiflora and polystyrene(120%) to show 7 times increased hardness. For the W.P.C. obtained by means of thermal curing and containing 80% of polymer or polymer mixture, the hardness and water absorptivity were improved 2.4 times and 3.4 times those of the non-treated woods, respectively. These data indicate that the properties of W.P.C. prepared by means of radiation curing are not much different from those of W. p. C. prepared by means of thermal curing. Both of acid resistancy and alkali resistancy of the W.P.C. were also improved remarkably in comparison with the non-treated wood.

  • PDF

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber (각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향)

  • Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

The Search and Dyeing Properties of Natural Dyes Resources(II) - The Dyeing Properties of Boehmeria tricuspis Makino Extracts by Dyeing Condition - (천연염료자원 탐색 및 염색특성(II) - 염색조건에 따른 거북꼬리(Boehmeria tricuspis Makino)추출물의 염색특성 -)

  • Jo, Hyun-Jin;Lee, Sang-Kueg;Kang, Ha-Young;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2006
  • K/S values, Hue, Value, and Chroma changes of the hot-water and alkali extract of Boehmeria tricuspis have investigated to obtain an optimum dyeing conditions. Maximum optical absorption of the cotton, Hanji, and silk dyed with the extract were observed at 400 nm. The K/S value of the dyed silk was higher than those of other materials in the treatments with the temperature and time condition and there was not much changes in the treatments near $80\;^{\circ}C$ and 40 minutes. Also, the K/S value of the dyed silk was drastically increased as the concentration of the dye was increased. In the treatments with temperature and time condition, Hue of the materials dyed with alkali extracts resulted in YR color, whereas materials dyed with hot-water extracts provided R color. In the time and temperature condition of treatment, there were no significant changes in the samples treated near $80\;^{\circ}C$ and 40 minutes. The Value and Chroma of the dyed materials were not significantly changed. As a result, it is suggested that the optimum temperature, time, and concentration of dye would be $80\;^{\circ}C$, 40 minutes, and 100%, respectively, when cotton, Hanji, and silk are dyed with Boehmeria tricuspis extract.

  • PDF

Application of Natural Dyes for Developing Colored Wood Furniture (I) - Color Variation by Extraction Methods of Natural Dyes - (색채 목가구재 개발을 위한 천연염료의 이용에 관한 연구 (제1보) - 천연염료의 추출 방법에 따른 색채 변화 연구 -)

  • Moon, Sun-Ok;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Jong-Gab
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.75-85
    • /
    • 2004
  • The natural dyes from Gardenia jasminoides, Carthamus tinctorius L., Rhus javanica, Lithospermum erythrorhizon, Caesalpinia sappan L., and Castanea crenata were extracted under different pH in distilled water, As the pH in distilled water went from acid to alkali, the much deeper colors in the same color tone were generated from the individual plant species. Before dyeing, wood species were treated by different mordants including AI, Cu, Cr and Fe for color-fixing between wood and the natural dyes. Each mordant could develop independent color on the surface of the woods. The wood species dyed by the natural dyes created deep-tone colors according to higher pH and temperature of the dyeing solution, leading to deeper penetration of the dyes into the wood tissues. Finally through the computer modelling of natural-dyed wood furniture, it was confirmed that the colored furniture can adequately be compatible with the current interior spaces of diverse colors.

Adsorption of Heavy Metal Ions by Constituents of Bark (수피조성분에 의한 중금속 흡착)

  • Paik, Ki-Hyon;Choi, In-Gyu;Shin, Keum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.51-56
    • /
    • 1996
  • The Bark lignin(alkali- and acid lignin), bark extractives(hot water-and $Na_2SO_3$ extractives) of Quercus acutissima and Pinus densiflora, and flavonoids were used to detect heavy metal adsorption. The adsorption ratio of heavy metals by lignin was assigned for 40 to 50%, but was not dependent on lignin kinds. However, in case of the addition of light metals such as $Ca^{++}$ and $Mg^{++}$ to lignin the adsorption ratio was increased by 20 to 40%, and $Pb^{++}$ was almost completely adsorbed. On hot water extractives, the adsorption ratio was very low because the substrate was water-soluble, so the substrate should be water-insoluble to adsorb the heavy metals. However, the adsorption ratios of $Cd^{++}$ and $Pb^{++}$ on $Na_2SO_3$ extractives were significantly increased, while those of $Zn^{++}$ and $Cu^{++}$, were similar to lignin. When four kinds of heavy metals were treated to $Na_2SO_3$ extractives together, more than 97% of $Pb^{++}$ and $Cu^{++}$ was adsorbed_ and $Zn^{++}$ was more adsorbed by 40%, and $Cd^{++}$ was not changed, comparing with the case that on kind of heavy metal was treated. There were differences between adsorption ratio of the kinds of flavonoids and heavy metals, and the adsorption ratio of heavy metals was assigned to 20 to 45% per 0.1g flavonoid.

  • PDF

THE ORIGIN AND DISTRIBUTION OF ANIONIC GROUPS IN TMP

  • Anna Sundberg;ndrey Pranovich;Bjarne Holmobom
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.254-258
    • /
    • 1999
  • The distribution of anionic groups in the fibers, the fines, the colloidal fraction and the dissolved fraction, respectively, of thermomechanical pulp (TMP) suspensions was determined and peroxide bleaching of spruce TMP were also studied. Spruce TMP was extracted with hexane, treated with alkali, or bleached with peroxide. Suspensions made at pH 5.5 were fractionated into long fibres, large fines, small fines, a colloidal fraction and a dissolved fraction. The charge of the fractions was determined using polyelectrolyte titration. To determined the origin of the charges, the contents of fatty acids, resin acids and acidic units in hemicelluloses in the different fractions were determined by has chromatography. Extraction of TMP with hexane prior to fractionation increased the measured charge of the fibres. The removal of the wood resin probably uncovered some carboxyl groups on the fibre surfaces, or improved th e penetration of polybrene into the pores of the fibres. The charge of the fines and the colloidal fraction was lower when the wood resin had been removed. Alkaline treatment of the TMP increased the charge of the fibres and fines, mainly because of demethylation of pectins. Alkaline treatment increased the charge also of the dissolved fraction, because of the release the charge also of the dissolved fraction, because of the release of pectic acids into the water phase. Alkaline peroxide bleaching further increased the charge of fibres and the dissolved fraction, most likely because of lignin oxidation. The charge of the colloidal fraction, consisting mainly of wood resin, was only slightly affected by alkaline treatment and peroxide bleaching. The anionic groups in TMP suspensions were mainly free uronic acids in the hemicelluloses. The contribution from the fatty and resin acids was substantial only for the colloidal fraction.

Chromophoric Structures of Alkali Lignin (알카리리그닌의 착색구조(着色構造)에 관(關)한 연구(硏究))

  • Yoon, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.1-30
    • /
    • 1981
  • To investigate the formation of the chromophoric structures taking place during the alkaline pulping vanillyl alcohol [${\alpha}-^{13}C$] guaiacylglycerol-${\beta}$-aryl ether [${\alpha}-^{13}C$ or ${\gamma}-^{13}C$] and phenylcoumarn [${\alpha}-^{13}C$] units as model lignins were treated with 1N sodium hydroxide at 165$^{\circ}C$ for 1.5-3 hours. From the chemical structures of the isolated products and $^{13}C$-NMR Spectra of the reaction mixtures, the main conclusion is as follows; 1) Condensation products of II-1-5 were identified from the reaction mixture of vanillyl alcohol treated with alkali and theses compounds afforded the quinonmethide structure(Fig. 3-7) by air oxidation. 2) Treatment of guaiacylglycerol-${\beta}$-aryl ether unit gave ${\varphi}$-aryl-${\beta}$-aroxy quinone structures (IV-15, IV-16), diguaiacyl-1, 4-penta-diene ${\beta}$, ${\beta}$'-diaroxyl distyrene methane unit, ${\beta}$-aroxy distyrene methane. These distyrene methanes of the compounds are transformed by air oxidation into the corresponding o-quinonemethide units (V-8, V-9). 3) On the treatment of phenylcoumaran, the stilbene derivative was formed in quantitative yield and dimerized(VI-11) in preference to oxidation to the corresponding extended quinone structures. The chromophoric structures taken place during the alkaline treatment of the model lignins are thought to be some important types in alkaline pulping on the basis of the reaction mechanism in this experiment.

  • PDF

Optimization Technology of Thermomechanical Pulp Made from Pinus densiflora (I) - Effect of Temperature and NaOH at Presteaming and Refining - (국내산 소나무로 제조되는 열기계펄프 제조 기술 최적화 연구 (1) - 목재 칩의 전처리와 리파이닝 시 온도와 NaOH 처리의 효과 -)

  • Nam, Hyegeong;Kim, Chul-Hwan;Lee, Ji-Young;Park, Hyunghun;Kwon, Sol;Cho, Hu-Seung;Lee, Gyeong-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Thermomechanical pulping process uses large amounts of energy, mostly electricity to run electrical facilities. Thermomechanical pulp (TMP) made from Pinus densiflora also has a big drawback that refining consumes 90 per cent of the total energy used in TMP process. This study explored to draw up a way to save refining energy through different thermal treatment at the stages of presteaming and refining. Presteaming temperature was $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$. After presteaming at each temperature, refining was carried out at $100^{\circ}C$, $120^{\circ}C$, and $140^{\circ}C$ respectively. In a presteaming stage, steaming temperature over $120^{\circ}C$ greatly contributed to the decrease of refining energy leading to earlier attainment of a target freeness, irrespective of refining temperature. In addition, NaOH treatment with presteaming enhanced better development of fiber properties during refining than presteaming without NaOH. High temperature refining at $140^{\circ}C$ produced a high strength paper, and wood chips treated by alkali responded better to refining than at over $120^{\circ}C$. Improved softening effect on wood chips led to the decrease in shives contents but it gave no effect on pitch contents of TMP.