• Title/Summary/Keyword: alkali-soluble resin

Search Result 7, Processing Time 0.021 seconds

Dispersion of Carbon Black in Acrylic Resin Aqueous Solution (아크릴 수지 수용액에서의 Carbon black의 분산에 관한 연구)

  • 오지만;김성빈;권대환
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.16-27
    • /
    • 2002
  • Recently, the attraction for water-based ink is increasing, Because Solvent ink, based on organic solvent, cause bad effect on environment and rise the cost. Instead of organic solvent that cause environment pollution as well as cost-rise by rise of petroleum price, Binder based on alkali-soluble resin is popular and studied by many other country. However, in domestic, research and development for alkali-soluble resin is not like, because of lack of understanding environmental pollution and safety, therefor alkali-soluble resin development and research for the properties of the water-based ink used by alkali-soluble resin is not study very well. In this paper, we studied dispersion of carbon black in acrylic resin solution and the properties of water-based ink used by carbon black and acrylic binder.

  • PDF

The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck;Cheong, In-Woo;Shim, Sang-Eun;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.545-551
    • /
    • 2006
  • Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Pattern Formation by the watersoluble PSR ink (수성 PSR 잉크를 이용한 패턴 형성)

  • Lee, Myung-Su;Kim, Young-Bea;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • PSR ink is used to insulation coating material that heat resistance is. The use purpose is used for bridge prevention, circuit protection, stabilization of insulation. Heat-cured resin was used mainly on the materials of PSR inks. But, UV-curing type resin in used. Also, because of recently environmental problem, ink is going to water type. Purpose of this study is to develop PSR ink that can develop in pure water. and experiment did that do from that find suitable oligomer and monomer and does brand ratio differ. Specially Knew that is extent water soluble UV resin develop possible is DPHA 10~50% that A/A1924 is 50~90wt %, monomer. As a result, when ratio of A/A1924 and DPHA low viscosity epoxy resin is 5:1.5:1.5, could get high sensibility pattern repeatability, tack and alkali-resistance.

  • PDF

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

기능성 레진을 이용한 구조화된 나노 입자의 특성

  • 신진섭;박영준;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.53-53
    • /
    • 2002
  • Alkali-soluble random copolymer (ASR) was used as a functional resin in the emulsion polymerization of styrene to prepare structured nanoparticles. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and conventional ionic emulsifier, sodium dodecyl benzene sulfonate (SDBS). ASR could form aggregates like micelles and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in ASR system was lower than that in SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization.

  • PDF

Preparation of Fine Silk Powder and It′s Application for Surface Modification (폐견사류의 미세분말화 및 표면 가공제 적용)

  • 이용우;이광길;여주홍;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

Synthesis and performance assessment of modified epoxy resins containing fatty acid (지방산 변성 에폭시수지 합성과 성능평가)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.634-646
    • /
    • 2016
  • In this work, modified epoxy resins which were well melted in mild solvent were synthesized and solubility assessment was carried out for synthesized epoxy resins. Bisphenol-A type, phenol novolac type and ortho-cresol novolac type epoxy resins were used and fatty acid, dodecyl phenol (DP) and toluene diisocyanate (TDI) were added for synthesis of modified epoxy resins containing fatty acid (MEFA). Composition was epoxy resin/fatty acid = 1.0/0.5 and fatty acid/DP = 0.25/0.25 by equivalent weight and twelve MEFAs were synthesized according to epoxy resins. Viscosity and solubility were measured for twelve MEFAs. As a result, solubility of MEFA was excellent for mild solvent according to increasement of contents of benzene ring, glycidyl group and carbon number of alkyl group. And physical properties were measured for each coating of paints after preparing transparent paints of MEFA to melt well in mild solvent among twelve MEFAs. As a result, they showed an optimal performance on conditions of equivalent ratio of bisphenol-A type epoxy resin/fatty acid/DP/TDI; 1.0/0.25/0.25/0.5 and equivalent ratio of phenol novolac type epoxy resin/fatty acid/DP; 1.0/0.25/0.25 for drying time, adhesion, hardness, impact resistance and alkali resistance.