• Title/Summary/Keyword: alkali modification

Search Result 50, Processing Time 0.019 seconds

Modification of Wool Treated with Alkali and Alkali/CTAB (I) -Changes of chemical properties- (알칼리와 CTAB 처리에 의한 양모섬유의 개질(I) -화학적 성질의 변화-)

  • 김영리;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 1996
  • The purpose of this study is to investigate the change of the chemical properties of wool treated with six kinds of alkali (NaOH, Naac03, NH40H, NH2CH3CH30H, TMAH and BTMAH) with or without CTAB. Content of bound fatty acid liberated from wool surface, elemental composition and allw6rden time were measured to compare the surface modification of untreated and alkali treated wool. Also, the chemical degradation of the fiber was investigated by measuring cystine contents and urea-hydrogensulfite solubility. The result were as follows: 1. By the alkali treatment of wool, the covalently bound fatty acid of the epicuticle was removed and the allworden time was shortened, and in the case of wool treated with TMAH, BTMAH, the allw6rden sacs were formed unevenly and rarely. Also, cystine contents and urea-hydrogensulfite solubility were decreased by alkali treatment on wool. 2. The modification of epicuticle and the chemical degradation of wool were occurred due to alkaline hydrolysis in the order of TMAH, BTMAH > NaOH, Na3c03> NH2CH3CHaOH, NH40H. 3. As a treating time increased, the modification of epicuticle and chemical degradation of wool were accelerated. By the addition of CTAB to the alkali solution, the modification of epicuticle was increase, and the cystine contents and urea-hydrogensulfite solubility were reduced than that of wool teated with alkli without CTAB due to reduction of negative charge on the wool surface by the adhesion of CTAB.

  • PDF

Effect of Surface Modification of Waste Glass for Fine Aggregate on the Mechanical Properties and Alkali Silica Reaction of Mortar (잔골재용 폐유리의 표면개질이 모르타르의 역학적 특성 및 알칼리 실리카 반응에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Sasui, Sasui;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.23-24
    • /
    • 2020
  • In this study, effect of surface modification of waste glass for fine aggregates on the mechanical properties and alkali silica reaction of mortar was analyzed. As a result, it was confirmed that the incorporation of waste glass fine aggregate decreases the mechanical properties of the mortar and increase the alkali silica reaction expansion. On the other hand, the surface modification of the waste glass fine aggregate is effective in improving this problem. However, unlike green and brown waste glass, it is judged that an additional experiment to determine the cause is necessary for white waste glass where alkali silica reactive expansion occurs extremely.

  • PDF

Formation Mechanism of Mesoporous Aluminum Hydroxide Film by Alkali Surface Modification (알칼리 표면개질을 통한 메조포러스 알루미늄 하이드록사이드 필름 형성 기구)

  • Seo, Young-Ik;Jeon, Yong-Jin;Lee, Young-Jung;Kim, Dae-Gun;Lee, Kyu-Hwan;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • In this study, a new, relatively simple fabrication method for forming a mesoporous $Al(OH)_3$ film on Al substrates was demonstrated. This method, i.e., alkali surface modification, was simply comprised of dipping the substrate in a $5\times10^{-3}$ M NaOH solution at $80^{\circ}C$ for one minute and then immersing it in boiling water for 30 minutes. After alkali surface modification, a mesoporous $Al(OH)_3$ film was formed on the Al substrate, and its chemical state and crystal structure were confirmed by XPS and TEM. According to the results of the XPS analysis, the flake-like morphology after the alkali surface modification was mainly composed of $Al(OH)_3$, with a small amount of $Al_2O_3$. The mesoporous $Al(OH)_3$ layer was composed of three regions: an amorphousrich region, a region of mixed amorphous and crystal domains, and a crystalline-rich region near the $Al(OH)_3$ layer surface. It was confirmed that the stabilization process in the alkali surface modification strongly influenced the crystallization of the mesoporous $Al(OH)_3$ layer.

Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films (알카리 표면개질 처리가 무전해 구리 도금피막과 폴리이미드 필름의 접합력에 미치는 효과)

  • Son, Lee-Seul;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The effects of the alkali surface modification process on the adhesion strength between electroless-plated Cu and polyimide films were investigated. The polyimide surfaces were effectively modified by alkali surface treatments from the hydrophobic to the hydrophilic states, and it was confirmed by the results of the contact angle measurement. The surface roughness increased by alkali surface treatments and the adhesion strength was proportional to the surface roughness. The adhesion strength of Cu/polyimide interface treated by KOH + EDA (Ethylenediamine) was 874 gf/cm which is better than that treated by KOH and KOH + $KMnO_4$. The results of XPS spectra revealed that the alkali treatment formed oxygen functional groups such as carboxyl and amide groups on the polyimide films which is closely related to the interfacial bonding mechanism between electroless-plated Cu and polyimide films. It could be suggested that the species and contents of functional group on polyimide films, surface roughness and contact angle were related with the adhesion strength of Cu/polyimide in combination.

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Effects of Alkaline Treatment on the Characteristics of Chemical Pulps for Papermaking (알칼리 처리가 제지용 화학펄프의 특성에 미치는 영향)

  • Won, Jong-Myoung;Kim, Min-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • The effects of alkaline treatment on the WRV, crystalline structure and sheet structure of softwood and hardwood bleached kraft pulp were investigated. Sodium hydroxide and sodium carbonate were used as chemicals for alkaline treatment and two levels of alkali dosage (5%, 10%) were applied respectively. Alkali treated and untreated pulp were refined to three levels (550, 450 and 350 mL CSF). WRV of the alkali treated pulps depended on the alkaline type and concentration. It was found that the crystalline structures of softwood and hardwood pulp were not changed by refining. Sodium carbonate and lower concentration of sodium hydroxide treatment did not caused any modification of cellulose crystalline structure, while higher concentration of sodium hydroxide treatment caused the partial modification of cellulose crystalline structure. Alkaline treatment of hardwood bleached kraft pulp led to the shrinkage of fiber diameter and bulky structure of sheet. Alkaline treatment of softwood bleached kraft pulp did not cause the significant change in fiber shrinkage and bulk of sheet.

Effects of Ar-Plasma Treatment in Alkali-Decomposition of Poly(ethylene terephthalate)

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.387-392
    • /
    • 2003
  • The ablation effects of Ar-plasma treatment and alkali-decomposition behavior in NaOH solution of polyethylene terephthalate (PET) film were investigated. The modifications were evaluated by analysis of atomic force microscopy topographical changes, and by the measurement of decomposition yield in conjunction with heats of formation and electron densities of acyl carbon calculated by Parameterization Method 3 method. It has shown that the alkali-decomposition is hampered by plasma treatment and its decomposition yield is closely related with plasma treatment conditions such as exposure time to plasma. Plasma-treated PET films exhibited lower decomposition yield, compared to that of virgin PET. Increasing plasma exposure time contributes positively to decrease the decomposition yield. It has also shown that the topography of PET surface was affected by the base-promoted hydrolysis as well as Ar-plasma treatments. These behaviors are attributed to the decreased nucleophilicity of acyl carbon damaged by the ablation of Ar-plasma.

Modification of Tencel Fabric Treated with Chitosan( II ) - Change of Dyeing Properties - (키토산처리에 의한 텐셀 직물의 개질기능화(II) - 염색성의 변화 -)

  • 육은영;배현숙
    • Textile Coloration and Finishing
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Tencel fabric cationized with chitosan can be effectively dyed with anionic dyes. To investigate the change of dyeing properties of cationized Tencel fabric, some experiments were performed under the several dyeing conditions with acid and reactive dyes. Whiteness index decreased with the increment of crosslinking agent concentration. The cationized Tencel fabric was dyed well by anionic dye such as acid dye, the dyeability of reactive dye was improved by addition of a little salt without alkali. The dye fixation on the cationized Tencel fabric was increased with chitosan concentration without electrolyte and alkali. The dyeability of Tencel treated with chitosan was better than controlled Tencel, especially under the acidic conditions. According to the number and the types of functional group of reactive dyes, dye affinity of the modified Tencel fabric varied and wash fastness of acid dye was better than reactive dye.

Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization

  • Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Jung, Young-Joon;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.235-240
    • /
    • 2008
  • This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from $TeO_4$ trigonal bipyramids (tbp) to $TeO_3$ trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (${\Delta}T$) of alkali tellurite glasses were investigated, as $M_2O$ [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.

The Formation of Hybridized Porous Structure of Al Alloy by Alkali Surface Modification (알칼리 표면개질을 통한 다공성 알루미늄 합금의 하이브리드 기공구조 형성)

  • Seo, Young-Ik;Kim, Young-Moon;Lee, Young-Jung;Kim, Dae-Gun;Lee, Kyu-Hwan;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.