• 제목/요약/키워드: alkali metal

검색결과 403건 처리시간 0.03초

열화된 종이자료의 보존성 개선을 위한 세척처리 특성 (Effect of Washing Treatment of Aged Paper Materials for Better Conservation)

  • 이귀복;서영범;박소연;전양;신종순
    • 펄프종이기술
    • /
    • 제38권4호
    • /
    • pp.53-60
    • /
    • 2006
  • Paper materials for long term conservation suffer slowly mechanical and chemical deterioration, the extent of which may depend upon their conservation environment. Those deterioration includes discoloring, low moisture content, acidification, and brittleness. To slow deterioration, washing treatment, deacidification, and polymer reinforcement on paper materials are usually used. One easy and simple method of fixing low moisture content and acidification was an washing method, and we used both distilled and alkali water in washing method in this study. Alkali water is electrolyzed cathode water of high pH, and has no alkali metal ions in it. Experiment showed that washing treatment with both distilled and alkali water gave improvement in raising moisture content, pH, and mechanical strength of paper materials even after severe accelerated aging test. Advantageous effect of alkali water over distilled water on preventing deterioation was also shown clearly.

Structure Optimization of Di-ionizable Calixarene Nano-baskets for Competitive Solvent Extraction of Alkali and Alkaline Earth Metals

  • Mokhtari, Bahram;Pourabdollah, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3855-3860
    • /
    • 2011
  • The competitive solvent extractions of alkali and alkaline earth metals by di-ionizable calix[4]arene nano-baskets were studied using nine conformers of calix[4]arene nano-baskets. The objective of this work is to assess the variation of macrocycle conformation, orientation and position of pendant moieties upon the extraction parameters (efficiency, selectivity and $pH_{1/2}$) of the complexes. The results revealed that alternation of ring conformation in calixarene scaffold affects the solvent extraction parameters towards alkali and alkaline earth metals, while changing the orientation of pendant moieties from ortho- to para- as well as cis- to trans-analogues depicted no changes in those extraction parameters.

Properties of artificial lightweight aggregates made from waste sludge

  • Chiou, I.J.;Chen, C.H.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.617-629
    • /
    • 2011
  • In this investigation, reservoir sediment and municipal sewage sludge were sintered to form the artificial lightweight aggregates. The sintered aggregates were compared with the commercialized lightweight aggregates to in terms of potential alkali-silica reactivity and chemical stability based on analyses of their physical and chemical properties, leaching of heavy metal, alkali-silica reactivity, crystal phase species and microstructure. Experimental results demonstrated that the degree of sintering of an aggregate affected the chemical resistance more strongly than did its chemical composition. According to ASTM C289-94, all potential alkali-silica reactivity of artificial lightweight aggregates were in the harmless zone, while the potential reactivity of artificial lightweight aggregates made from reservoir sediment and municipal sewage sludge were much lower than those of traditional lightweight aggregates.

Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure

  • Jeon, Seong Hoon;Yoon, Jung Hwan;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1506-1510
    • /
    • 2014
  • A kinetic study on nucleophilic substitution reaction of 5-nitro-8-quinolyl picolinate (6) with alkali-metal ethoxides (EtOM; M = K, Na, and Li) in anhydrous ethanol is reported. The plot of $k_{obsd}$ vs. [EtOM] curves upward in the absence of crown ethers but is linear with significantly decreased reactivity in the presence of crown ethers. Dissection of $k_{obsd}$ into $k_{EtO}$- and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the ion-paired EtOM is significantly more reactive than the dissociated $EtO^-$ (e.g., $k_{EtOM}/k_{EtO^-}$ = 33.4-141). This indicates that the reaction of 6 is catalyzed by $M^+$ ions in the order $Na^+$ > $Li^+$ > $K^+$ and the catalytic effect disappears in the presence of a proper crown ether. Picolinate ester 6 is much more reactive and is more strongly catalyzed by $M^+$ ions than 5-nitro-8-quinolyl benzoate (5). It has been concluded that $M^+$ ions catalyze the reaction of 6 by increasing electrophilicity of the reaction center through a cyclic transition state, which is structurally not possible for the reaction of 5.

일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기 (Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED)

  • 김지훈;맹민재;홍종암;황주현;최홍규;문제현;이정익;정대율;최성율;박용섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF