Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1506

Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure  

Jeon, Seong Hoon (Hanyoung Foreign Language High School)
Yoon, Jung Hwan (Young-il High School)
Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
A kinetic study on nucleophilic substitution reaction of 5-nitro-8-quinolyl picolinate (6) with alkali-metal ethoxides (EtOM; M = K, Na, and Li) in anhydrous ethanol is reported. The plot of $k_{obsd}$ vs. [EtOM] curves upward in the absence of crown ethers but is linear with significantly decreased reactivity in the presence of crown ethers. Dissection of $k_{obsd}$ into $k_{EtO}$- and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the ion-paired EtOM is significantly more reactive than the dissociated $EtO^-$ (e.g., $k_{EtOM}/k_{EtO^-}$ = 33.4-141). This indicates that the reaction of 6 is catalyzed by $M^+$ ions in the order $Na^+$ > $Li^+$ > $K^+$ and the catalytic effect disappears in the presence of a proper crown ether. Picolinate ester 6 is much more reactive and is more strongly catalyzed by $M^+$ ions than 5-nitro-8-quinolyl benzoate (5). It has been concluded that $M^+$ ions catalyze the reaction of 6 by increasing electrophilicity of the reaction center through a cyclic transition state, which is structurally not possible for the reaction of 5.
Keywords
Metal-ion catalysis; Crown ether; Electrophilicity; Nucleofugality; Transition state;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 (d) Barrera, I. F.; Maxwell, C. I.; Neverov, A. A.; Brown, R. S. J. Org. Chem. 2012, 77, 4156-4160.   DOI   ScienceOn
2 (a) Neverov, A. A.; Chen, L. D.; George, S.; Simon, D.; Maxwell, C. I.; Brown, R. S. Can. J. Chem. 2013, 91, 1139-1146.   DOI   ScienceOn
3 (b) Maxwell, C. I.; Mosey, N. J.; Brown, R. S. J. Am. Chem. Soc. 2013, 135, 17209-17222.   DOI   ScienceOn
4 (c) Mohamed, M. F.; Sanchez-Lombardo, I.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2012, 10, 631-639.   DOI   ScienceOn
5 (e) Raycroft, M. A. R.; Liu, C. T.; Brown, R. S. Inorg. Chem. 2012, 51, 3846-3854.   DOI   ScienceOn
6 (f) Brown, R. S. Prog. Inorg. Chem. 2012, 57, 55-117.
7 (a) Mitic, N.; Hadler, K. S.; Gahan, L. R.; Hengge, A. C.; Schenk, G. J. Am. Chem. Soc. 2010, 132, 7049-7054.   DOI   ScienceOn
8 (b) Feng, G.; Tanifum, E. A.; Adams, H.; Hengge, A. C. J. Am. Chem. Soc. 2009, 131, 12771-12779.   DOI   ScienceOn
9 (a) Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752.   DOI
10 (d) Zalatan, J. G.; Catrina, I.; Mitchell, R.; Grzyska, P. K.; O'Brien, P. J.; Herschlag, D.; Hengge, A. C. J. Am. Chem. Soc. 2007, 129, 9789-9798.   DOI   ScienceOn
11 (e) Davies, A. G. J. Chem. Res. 2008, 361-375.
12 (f) Davies, A. G. J. Chem Soc. Perkin 1 2000, 1997-2010.
13 (b) Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866.   DOI
14 (c) Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716.   DOI
15 (d) Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946.   DOI   ScienceOn
16 (e) Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-1716.   DOI
17 (a) Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J. I. Org. Lett. 2007, 9, 3729-3731.   DOI   ScienceOn
18 (b) Livieri, M.; Manicin, F.; Saielli, G.; Chin, J.; Tonellato, U. Chem. Eur. J. 2007, 13, 2246-2256.   DOI   ScienceOn
19 (c) Livieri, M.; Mancin, F.; Tonellato, U.; Chin, J. Chem. Commun. 2004, 2862-2863.
20 (d) Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493.   DOI   ScienceOn
21 (a) Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373.   DOI   ScienceOn
22 (b) Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363.   DOI   ScienceOn
23 (c) Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557.   DOI
24 (d) Chei, W. S.; Ju, H.; Suh, J. Bioorg. Med. Chem. Lett. 2012, 22, 1533-1537.   DOI   ScienceOn
25 (e) Chei, W. S.; Ju, H.; Suh, J. J. Biol. Inorg. Chem. 2011, 16, 511-519.   DOI
26 (i) Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877.   DOI   ScienceOn
27 (f) Kim, H. M.; Jang, B.; Cheon, Y. E.; Suh, M. P.; Suh, J. J. Biol. Inorg. Chem. 2009, 14, 151-157.   DOI   ScienceOn
28 (g) Chei, W. S.; Suh, J. Prog. Inorg. Chem. 2007, 55, 79-142.   DOI
29 (h) Jeung, C. S.; Song, J. B.; Kim, Y. H.; Suh, J.Bioorg. Med. Chem. Lett. 2001, 11, 3061-3064.   DOI   ScienceOn
30 (j) Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892.   DOI   ScienceOn
31 (k) Suh, J. Acc. Chem. Res. 1992, 25, 273-279.   DOI
32 (b) Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448.   DOI
33 (d) Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63.   DOI   ScienceOn
34 (e) Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167.   DOI   ScienceOn
35 (f) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610.   DOI   ScienceOn
36 (g) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475.   DOI   ScienceOn
37 (h) Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439.   DOI   ScienceOn
38 (a) Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961-968.   DOI   ScienceOn
39 (b) Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497.   DOI   ScienceOn
40 (a) Um, I. H.; Kang, J. S.; Kim, C. W.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523.   DOI
41 (a) Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923-930.   DOI   ScienceOn
42 (b) Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
43 Um, I. H.; Seo, J. A.; Mishima, M. Chem. Eur. J. 2011, 17, 3021-3027.   DOI   ScienceOn
44 (b) Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E.Bull. Korean Chem. Soc. 2008, 29, 117-121.   DOI   ScienceOn
45 Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411.   DOI
46 Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.
47 (a) Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806.   DOI   ScienceOn
48 (b) Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677.   DOI   ScienceOn
49 (c) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243.   DOI   ScienceOn
50 (d) Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803.   DOI   ScienceOn
51 (f) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942.   DOI   ScienceOn
52 (a) Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444.   DOI   ScienceOn
53 (b) Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172.   DOI   ScienceOn
54 (c) Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185.   DOI   ScienceOn
55 (c) Humphry, T.; Iyer, S.; Iranzo, O.; Morrow, J. R.; Richard, J. P.; Paneth, P.; Hengge, A. C. J. Am. Chem. Soc. 2008, 130, 17858-17866.   DOI   ScienceOn
56 (a) Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon, J. G. J. Chem. Soc., Chem. Commun. 1984, 162-163.
57 (c) Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455.   DOI
58 (c) Um, I. H.; Song, Y. J.; Kim, M. Y.; Lee, J. I. Bull. Korean Chem. Soc. 2013, 34, 1525-1529.   DOI   ScienceOn
59 (e) Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985.   DOI   ScienceOn