• Title/Summary/Keyword: alkali metal

Search Result 403, Processing Time 0.03 seconds

Competitive Solvent Extraction of the Mixture of Alkali Metal and Alkaline Earth Metal Cation containing Crown Ether Carboxylic Acid and Crown Ether Phosphonic Acid (크라운에테르 카르복시산과 크라운에테르 포스포닉산을 포함한 알칼리 금속과 알칼리 토금속 양이온 혼합물의 경쟁적 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Competitive solvent extraction of the mixure of alkali metal and alkaline earth cation from water into organic solvent containing the crown ether carboxylic acid and anlogous crown ether phosphonic acid was investigated as follows. The lipophilic group is found to strongly influence to the selective extraction in the mixed systems from only alkali metal cation for sym-(n-decyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ to mostly alkaline earth metal cation for sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid $\underline{3}$. Monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{2}$. and monoethyl-sym- bis]4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{4}$ showed good selectivity for $Na^+$ over $Mg^{2+}$, the second extracted ion. Structural variation in the crown ether phosphonic acid somewhat was influenced to the extraction selectivity in the mixed systems. when variation of the ionized group is influenced in the mixed systems, the selectivity of $Na^+$ as the second extracted ion was much better crown ether carboxylic acid $\underline{1}$ than crown ether phosphonic acid $\underline{2}$, while the efficiency of $Na^+$ extraction was better $\underline{2}$ (83% total loading) than $\underline{1}$ (32%).

Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils (여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향)

  • Kim, Min-Suk;Min, Hyungi;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong Sik;Bak, Gwan In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash

  • Kim, G.M.;Jang, J.G.;Naeem, Faizan;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.283-294
    • /
    • 2015
  • In the present study, a porous concrete with alkali activated slag (AAS) and coal bottom ash was developed and the effect of carbonation on the physical property, microstructural characteristic, and heavy metal leaching behavior of the porous concrete were investigated. Independent variables, such as the type of the alkali activator and binder, the amount of paste, and $CO_2$ concentration, were considered. The experimental test results showed that the measured void ratio and compressive strength of the carbonated porous concrete exceeded minimum level stated in ACI 522 for general porous concrete. A new quantitative TG analysis for evaluating $CO_2$ uptake in AAS was proposed, and the result showed that the $CO_2$ uptake in AAS paste was approximately twice as high as that in OPC paste. The leached concentrations of heavy metals from carbonated porous concrete were below the relevant environmental criteria.

An Efficient Preparation of 4-Nitrosoaniline from the Reaction of Nitrobenzene with Alkali Metal Ureates

  • Park, Jaebum;Kim, Hyung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • This paper describes the synthesis of alkali metal salts of urea (ureates) and their application to the direct preparation of 4-nitrosoaniline from nitrobenzene via nucleophilic aromatic substitution of hydrogen. Sodium and potassium ureates were readily prepared from the reaction of urea with sodium hydride, metal methoxides, and metal hydroxides. The effect of ureates as nucleophiles on the conversion of nitrobenzene to 4-nitrosoaniline was investigated and compared with that of a urea-metal hydroxide mixture. It was found that the ureates were superior for producing 4-nitrosoaniline owing to their higher thermal stability of the ureate. The ureate obtained from the treatment of urea with sodium hydride gave the highest yield for the preparation of 4-nitrosoaniline. The ureates generated from the reaction of urea with metal hydroxide also gave high yields of 4-nitrosoaniline. Catalytic hydrogenation of 4-nitrosoaniline afforded polymer-grade 1,4-benzenediamine in quantitative yield.

Hydration Mechanism of Alkali Activated Slag Cement

  • Jong Cheol Kim;Keun Ho Auh;Sung Yun Hong
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.35-39
    • /
    • 1999
  • For many years, alkali activated blast furnace slag cement containing no ordinary portland cement has received much attention in the view of energy saving and its many excellent properties. We examined the structural change of slag glass which was activated by alkali metal compounds using IR spectroscopy. The properties of hydrated products and unhydrated slag grains was characterized by XRD and micro-conduction calorimeter. Ion concentration change in the liquid during the hydration of blast furnace slag was also studied to investigated the hydration mechanism.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.

Alkali & Alkaline-Earth Metal Sources for OLED Devices

  • Tominetti, S.;Cattaneo, L.;Longoni, G.;Bonucci, A.;Toia, L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1763-1768
    • /
    • 2006
  • Low work function alkali metals and alkaline earths successfully lower the electron injection barrier and increase electron injection into the organic layer in OLED displays, but their implementation is not easy. AlkaMax technology can ensure the required metal evaporation rate in a fast, homogeneous and easily controllable way.

  • PDF