• Title/Summary/Keyword: alkali materials

Search Result 561, Processing Time 0.035 seconds

A Petrological and Geochemical Study of Granites in the Cheju Island (제주도에서 산출되는 화강암에 관한 연구)

  • Ahn, Kun Sang;Lee, Hyun Koo;Lim, Hyun Cheol
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.513-518
    • /
    • 1995
  • A granite drilling core (-1200 m) obtained near the Majang cave in east part of the Cheju island. The rock is pinksh in color and has miarolitic cavities. It is coarse-grained rock and consists of quartz, plagioclase, alkali feldspar, biotite and magnetite. The rock shows characteristically micrographic texture. The alkali feldspar is subhedral to anhedral and generally interstitial grains and fonns micrographic texture. K/Ar age of alkali feldspar in the core specimen is $58.14{\pm}1.4Ma $ (early Tertiary). The age, rock features and whole rock chemistry of the rock has strong resemblance to micrographic granites, so called "masanite", in southeastern part of the Korean peninsular. The granitic fragments from drilling core (- 920 m) obtained in Jungmun area in south part of the Cheju island consist of quartz, plagioclase, alkali feldspar and biotite. The fragments in the Jungmun area are similar to granitic xenolith near the Cheju city for the absence of micrographic texture and different alkali feldspar.

  • PDF

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

The deactivation behavior of SCR catalyst by alkali and alkali earth metal (알칼리 및 알칼리 토금속에 의한 SCR 촉매 비활성 거동)

  • Han, Seungyun;Shin, Min-Chul;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.238-242
    • /
    • 2016
  • The effect of the alkali, alkali earth metal elements on selective catalytic reduction(SCR) catalyst deactivation behavior were investigated in terms of microstructure, surface area, pore volume and De-NOx test. Poisoned SCR catalyst were manufactured by injection of $K_2CO_3$, $Na_2CO_3$, $Ca(CH_3COO)_2{\cdot}H_2O$, $C_4H_6MgO_4{\cdot}4H_2O$, $H_3PO_4$ solutions in the new SCR catalyst at $350^{\circ}C$ for 6 hours. New and poisoned catalysts surface were similar. But specific surface area, pore volume decrease from Na, Mg, K, Ca, P compared to new SCR catalyst. Especially, Na poisoned catalyst surface area and pore size extremely decreased by $10.20m^2/g$, $0.061cm^2/g$. De-NOx test results of new and poisoned catalysts at $150{\sim}450^{\circ}C$ indicated that alkali metal (K, Na) poisoned SCR catalysts have the lowest De-NOx efficiency, alkali earth metal poisoned SCR catalysts (Ca, Mg) De-NOx efficiency are higher than alkali metal poisoned SCR catalysts. P poisoned SCR catalyst De-NOx efficiency is similar new SCR catalyst. It were considered that physical deactivation of SCR catalyst was affected by SCR catalyst surface area and pore volume change.

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

Relations between Composition, Temperature and Electrical Conductivity of (60-xSiO2-40Na2O-xCaO(x=0∼15wt%) Glass System ((60-x)SiO2-40Na2O-xCaO(x=0∼15wt%)조성유리계의 조성, 온도 및 전기전도도간의 상관특성)

  • Jung, Y.J.;Lee, K.H.;Kim, T.H.;Kim, Y.S.;Chin, H.J.;Ryu, B.K.
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.414-419
    • /
    • 2007
  • We report the electrical conductivity of the mixed alkali silicate glasses in the system (60-x)$SiO_2-40Na_2O-xCaO(x=0\sim15wt%)$ in the temperature range from $150^{\circ}C$ to $620^{\circ}C$. In the range from $150^{\circ}C$ to glass transition temperature$(T_g)$, the electrical conductivities of glass samples had a tendency to be proportion with temperature. The glasses of containing over 7.5wt% CaO showed lower conductivities than the glasses of containing 0 and 5wt% CaO because two kinds of alkali ions$(Na^+,\;Ca^{2+})$ were obstructed each other. On the other hand, in the range from $T_g$ to $620^{\circ}C$, the electrical conductivity of glasses($7.5{\leq}x{\leq}12.5$) was unstable and decreased in some region. From XRD results, the $Na_4Ca(SiO_3)_3$ phase were observed in these glasses. This means the alkali ions didn't behave as carrier, it seems that this caused the conductivities decrease. In case of glass of containing 15wt% CaO, any crystal phase were not observed. This means the alkali ions behaved as carrier, it consequently seems the conductivity increased.

Preparation of WC Powders by SHS Process in the Presence of Alkali Salts (자전연소합성법에서의 알칼리염을 이용한 WC 분말의 제조)

  • Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.152-156
    • /
    • 2007
  • Tungsten carbide powder was synthesized by SHS (self-propagating high-temperature synthesis). Except $WO_{3}$, each concentration of raw material ($WO_{3},\;Mg,\;NaCl,\;Na_{2}CO_{3},\;C$) was investigated. Final product was characterized by XRD and SEM. X-ray data demonstrated that the $NaCl+Na_{2}CO_{3}$ combined mixture has superiority in the WC formation process. Single phase and submicrometer WC powder was synthesized at the temperature below $1600^{\circ}C$. The role of sodium salts in combustion process was discussed, and chemical mechanism of WC formation was proposed. WC powder prepared by salt-assisted combustion synthesis has a size $0.2{\sim}3\;{\mu}m$ and low agglomeration degree.

Strength behaviour and hardening mechanism of alkali activated fly ash Mortars (알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Lim Sang Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF

Complex Chalcogenides as Thermoelectric Materials: A Solid State Chemistry Approach

  • 정덕영;Lykourgos Iordanidis;최경신;Mercouri G. Kanatzidis
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1283-1293
    • /
    • 1998
  • A solid state chemical approach to discover new mateials with enhanced thermoelectric properties is described. The aim is to construct three-dimensional bismuth chalcogenide framework structures which contain tonically interacting alkali or alkaline earth atoms. The alkali atoms tend to have soft "rattling" type phonon modes which result in very low thermal conductivity in these materials. Another desirable feature in this class of compounds is the low crystal symmetry and narrow band-gaps. Several promising materials such as BaBiTe3, KBi6.33S10, K2Bi8S13, β-K2Bi8Se13, K2.5Bi8.5Se14, Ba4Bi6Se13, Eu2Pb2Bi6Se13, Al1+xPb4-2xSb7+xSe15 (A=K, Rb), and CsBi4Te6 are described.

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

Effect of Additives on the Refractive Index of B2O3-SiO2-Al2O3 Glasses for Photolithographic Process in Electronic Micro Devices

  • Won, Ju-Yeon;Hwang, Seong-Jin;Lee, Jung-Ki;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.370-373
    • /
    • 2010
  • In fabricating plasma display panels, the photolithographic process is used to form patterns of barrier ribs with high accuracy and high aspect ratio. It is important in the photolithographic process to control the refractive index of the photosensitive paste. The composition of this paste for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system, including additives of alkali oxides and rare earth oxides. In this work, we investigated the density, structure and refractive index of glasses based on the $B_2O_3-SiO_2-Al_2O_3$ system with the addition of $Li_2O$, $K_2O$, $Na_2O$, CaO, SrO, and MgO. The refractive index of the glasses containing K2O, Na2O and CaO was similar to that of the [BO3] fraction while that of the SrO, MgO and Li2O containing glasses were not correlated with the coordination fraction. The coordination number of the boron atoms was measured by MAS NMR. The refractive index increased with a decrease of molar volume due to the increase in the number of non-bridging oxygen atoms and the polarizability. The lowest refractive index (1.485) in this study was that of the $B_2O_3-SiO_2-Al_2O_3-K_2O$ glass system due to the larger ionic radius of $K^+$. Based on our results, it has been determined that the refractive index of the $B_2O_3-SiO_2-Al_2O_3$ system should be controlled by the addition of alkali oxides and alkali earth oxides for proper formation of the photosensitive paste.