• Title/Summary/Keyword: alkali material

Search Result 412, Processing Time 0.021 seconds

Effect of Tree Age and Active Alkali on Kraft Pulping of White Jabon

  • Wistara, Nyoman J.;Carolina, Anne;Pulungan, Widya S.;Emil, Nadrah;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.566-577
    • /
    • 2015
  • White Jabon (Anthocephalus cadamba Miq.) is one of the fast growing species in Indonesia and has the potential as the raw material for pulp and paper. In this research, 3, 5, and 7 years old White Jabon woods were pulped under different active alkali charge of 15%, 18%, 21%, 24%, and 27%, and its effect on delignification degree, kappa number, pulp yield, pulp viscosity, brightness, unbeaten freeness, and delignification selectivity was investigated. The results showed that tree age and active alkali concentration influenced the quality of pulp and pulping properties, except for that of unbeaten freeness. Delignification degree increased with increasing active alkali charge, and this brought about the decrease of pulp kappa number. The pulping yield tended to decrease below the Klason lignin of approximately 4%. Even though the 3 years old wood resulted in the highest brightness and highest delignification selectivity, the highest pulp viscosity was obtained with the 5 years old wood. The dominant fiber length of all wood ages was in the range of 1.2 - 2.0 mm. The 3 years old wood was considered to be the most promising raw material for kraft pulping in the view point of pulping properties, pulp quality and harvesting rotation.

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF

Manufacture of alkali activated mortar using bottom ash and its properties (바텀애쉬를 이용한 알칼리 활성화 모르타르의 제조 및 특성)

  • Kang, Su-Tae;Kang, Hyun-Jin;Ryu, Gum-Sung;Ko, Kyung-Taek;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.267-268
    • /
    • 2010
  • In order to investigate the applicability of bottom ash as a source material in alikali activated mortar, experimental studies on the effect of the constituents in alkali activated mortar were performed in terms of workability and strength.

  • PDF

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Properties of portland cement concrete with the addition of a modified sulfur polymer (개질 유황 고분자가 혼입된 포틀랜드 시멘트 콘크리트의 특성)

  • Yu, Seung-Gun;Choi, Heon-Jin;Kwon, Hyok;Park, No-Kyung;Kim, Goo-Dae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.192-196
    • /
    • 2010
  • This paper describes the effects of modified sulfur polymer content on the compressive strength and chemical resistance of Portland cement concrete with and without the modified sulfur polymer. The Portland cement concrete which contained modified sulfur had much higher strength than the Portland cement concrete without modified sulfur, workability is stabled at $55^{\circ}C$. Alkali tolerance test was evaluated by immersing these concrete specimens in 13 % $CaCl_2$ solutions. In the alkali tolerance test, the resistance of Portland cement concrete with modified sulfur to $CaCl_2$ increased compared with Portland cement concrete without modified sulfur.

Hydrogen and Alkali Ion Sensing Properties of Ion Implanted Silicon Nitride Thin Film

  • Park, Gu-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.231-236
    • /
    • 2008
  • B, P, and Cs ions were implanted with various parameters into silicon nitride layers prepared by LPCVD. In order to get the maximum impurity concentration at the silicon nitride surface, a high temperature oxide (HTO) buffer layers was deposited prior to the implantation. Alkali ion and pH sensing properties of the layers were investigated with an electrolyte-insulator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. The ion sensing properties of implanted silicon nitrides were compared to those of as-deposited silicon nitride. Band Cs co-implanted silicon nitrides showed a pronounced difference in pH and alkali ion sensing properties compared to those of as-deposited silicon nitride. B or P implanted silicon nitrides in contrast showed similar ion sensitivities like those of as-deposited silicon nitride.

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Lining(I : Application of New Type Accelerator for High Strength Shotcrete) (Permanent Shotcrete Tunnel Lining 구축을 위한 고성능 숏크리트 개발( I : 고강도 숏크리트 개발을 위한 새로운 급결제 적용))

  • 박해균;이명섭;김재권;안병제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1023-1030
    • /
    • 2002
  • From the early 1980s, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate accelerator (waterglass) was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength and equivalent flexural strength were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Sugar Extraction by Pretreatment and Soda Pulping From Cattail (Typha latifolia L.) (1) Extraction of Sugar (부들의 전처리를 통한 당의 추출과 소다펄프화에 관한 연구 (1) 당 추출)

  • Lee, Sung-Eun;Kim, Wan-Jung;Son, Mi-Kyung;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • Cattail (Typha L.) was used as a raw material for producing both bio-ethanol and pulp for papermaking at the same time. Pretreatments of cattail stems and leaves with acid ($H_2SO_4$) and alkali (NaOH) in three different addition levels were studied before soda pulping. The acid pretreatment gave reducing sugar of 15.2% of initial weight, but alkali pretreatment close to 1%. Soda pulping of the pretreated cattail gave 3% reduction in pulp yield and less bonding properties in paper; however, refining of the pulp from the pretreated cattail with alkali restored their fiber bondings up to that of the pulp from no-pretreated cattail at equivalent freeness.