• Title/Summary/Keyword: alkali activated slag

Search Result 139, Processing Time 0.026 seconds

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

Mechanical Properties of the Alkali-Activated Slag Mortar with Gypsum (석고를 혼합한 알칼리 활성화 슬래그 모르타르의 특성)

  • Kim, Tae Wan;Hahm, Hyung Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • This study investigated the effects of blast furnace slag mortars activated with sodium hydroxide(NaOH) and gypsum in relation to flow, setting time and compressive strength. The parameters in this studied was the gypsum ratio 0 to 50%, 3M and 6M of activator concentration and $20{\pm}2^{\circ}C$ and $35{\pm}2^{\circ}C$ of curing temperatures. The results of flow was increase, setting time was increase as the amount of gypsum increases. But the results of compressive strength was dependent on the gypsum ratio, indicating that the compressive strength increased with the increase of the amount of gypsum until a certain limit, beyond which the strength decreased quickly.

The Strength and Drying Shrinkage Properties of Alkali-activated Slag using Hard-burned MgO (MgO를 혼합한 알칼리 활성화 슬래그의 강도와 건조수축 특성)

  • Kim, Tae-Wan;Jun, Yubin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this study, the properties of strength and drying shrinkage of alkali-activated slag cement (AASC) with magnesium oxide (MgO) contents between 0 and 16 wt% were investigated. The ground granulated furnace blast slag (GGBFS) was activated by potassium hydroxide (KOH) and dosage of activator was 2M and 4M. The MgO was replaced with 2% to 16% of GGBFS by weight. The water-binder ratio (w/b) was 0.5. In the result, the higher MgO content leads to a slightly higher degree of reaction and thus to a higher compressive strength at all ages. The compressive strength and ultra sonic velocity (UPV) increased with increases MgO contents. The drying shrinkage of AASC was decreased as the contents of MgO increases. The results from SEM confirmed that there were densified reaction product of higher MgO content specimens.

Shear Behavior of RC Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 RC 보의 전단거동)

  • Choi, Sung;Lee, Kwang-Myong;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • Several researches on cement zero concrete using alkali-activators have been conducted to investigate its fundamental material properties such as slump, strength and durability, however, research on the structural behavior of relevant members involving the elastic modulus, stress-strain relationship is essential for the application of this cement zero concrete to structural members. In this paper the shear behavior of reinforced concrete beams using 50 MPa-alkali activated slag concrete was experimentally evaluated. To achieve such a goal, six reinforced concrete beam specimens were fabricated and their shear behaviors were observed. The maximum difference between test results and analysis results in crack shear stress for beam specimens without stirrups is 31%, while that for beam specimens with stirrup is 15%. Furthermore, it is also found that the shear strength of alkali activated slag concrete is by 22~57% greater than the nominal shear strength calculated by design code, implying that shear design equations would provide conservative results on the safety side.

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar (염기도가 알칼리 활성고로슬래그 모르타르의 탄산화에 미치는 영향)

  • Song, Keum-Il;Lee, Bang-Yeon;Hong, Geon-Ho;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.577-584
    • /
    • 2012
  • Carbonation resistance is one of the most influencing factors on durability of concrete. Alkali activated slag (AAS) is known to have weaker resistance for carbonation than OPC due to the low calcium contents. In this paper, the carbonation characteristic of AAS mortar which is related to the basicity (CaO/$SiO_2$) was investigated. In order to give the various basicity conditions, SM (source material) was blended with quicklime (CaO) and silicon dioxide ($SiO_2$) by adopting mechano-chemical treatment method. Experiments including flow test, compressive strength test, carbonation depth test, together with XRD, FTIR and TGA were employed to evaluate the effects of basicity of SM on the carbonation characteristics. The test results showed that the carbonation resistance effectively increased with the increase of the basicity of SM.

Properties of the Alkali Activated Mortar According to Metakaolin Replacement Ratio (알칼리 활성화 모르타르의 메타카올린 치환율에 따른 특성)

  • Seo, Dong-Hyeon;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2016
  • The aim of this study is to look into the metakaolin replacement ratio of blast furnace slag based alkali activated slag mortar and its mechanical characteristics according to changes in stimulant concentration. Metakaolin has high fineness, and therefore the fluidity becomes lower as the replacement ratio becomes higher. So in this study, a sufficient value of mixing water was provided to secure fluidity for the characteristic experiment, and a different W/B was derived for each specimen in order to make the fluidity identical. A characteristic experiment was conducted according to the mol concentration of NaOH, which was used as the mixing water that affects fluidity. Additionally, compressive strength measurement, observation of inner microstructure through SEM, acid resistance experiment, and neutralization resistance was conducted. The results of this study revealed that for a high concentration NaOH solution to have even fluidity, a high W/B is necessary, and the functions were enhanced, not degraded.

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite (알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석)

  • Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트의 시간의존적 변형에 관한 실험적 연구)

  • Lee, Young-Jun;Kwon, Eun-Hee;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2015
  • The alternative material for cement has been attracting attention in construction projects. Especially, the alkali activated slag(hereafter, AAS) concrete is able to use for a structural vertical member because of 40MPa of compressive strength, However, the research about time-dependent deformation such as creep which is important to strength member is insufficient. Therefore, in this study, experiments were performed with respect to time-dependent deformation including the drying shrinkage and creep deformation of AAS concrete. The creep deformed ratio of AAS concrete was more than OPC concrete by approximately 4.3% and the dry shrinkage deformation of AAS concrete was more than OPC concrete by approximately 69%. The large amount of sodium silicate, alkali activator, is added causing temperature crack than promoted drying and drying creep which is confirmed by water ration test and SEM.