• Title/Summary/Keyword: algorithm transmission dose

Search Result 14, Processing Time 0.025 seconds

Transmission Dose Estimation Algorithm for in vivo Dosimetry

  • Yun, Hyong-Geun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2003
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field (부정형 방사선 조사면에 대한 투과선량 보정 알고리즘)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Wu Hong Gyun;Lee Hyoung Koo;Shin Kyo Chul;Kim Siyong;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.274-282
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.

Transmission Dose Estimation Algorithm for in vivo Dosimertry (투과선량을 이용한 생체내 (in vivo) 선량측정을 위한 알고리즘)

  • Yun, Hyong-Geun;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Kim, Si-Yong;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 co Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed lot estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

Development of the Algorithm for On-line Dosimetry System for High Energy Radiation Treatment (고에너지 방사선치료용 on-line 선량측정시스템을 위한 알고리즘의 개발)

  • Wu, Hong-Hyun;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.207-218
    • /
    • 1997
  • Purpose: The objective of this study is to develop an algorithm for estimation of tumor dose using measured transmission dose as a part of the development of on-line dosimetry system. Materials and Methods: Data of transmission dose were measured under various FS, Tp and PCD with a special water phantom for 6 MV and 10 MV X-ray. SCD (source-chamber distance) was set to 150 cm. Measurements were conducted with a 0.125 cc ion chamber. Results: Using measured data and regression analysis, two algorithms were developed for estimation of expected reading for measured data. Algorithm 1 consisted of the quadratic function of PCD and the tertiary function of AlP (area-perimeter ratio). Algorithm 2 consisted of the tertiary function of log(A/P)and the tertiary function of PCD. Algorithm 2 required less data set and was more accurate in comparing expected and observed dose. Conclusion: Using the algorithm developed, transmission dose can be estimated for any exposure condition, i.e. any given Tp, PCD and FS with high accuracy. To complete this algorithm, further developments are needed regarding the beam modifying device, the tissue inhomogeneity and the irregular body surface.

  • PDF

Development of software for real-time evaluation of tumor dose from transmission dose (실시간 투과선량 측정 소프트웨어의 개발)

  • Youn, J.W.;Lee, H.K.;Ha, S.H.;Huh, S.Y.;Choi, B.Y.;Suh, T.S.;Shinn, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.319-320
    • /
    • 1998
  • We have developed algorithm for calculating tumor dose from transmission dose in radiation therapy. Using data acquisition card and LabVIEW programming language, we acquired the signal from 9 ion chambers, processed and displayed it in real time. And we also developed GUI(Graphic User Interface) for system operation.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers (스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성)

  • Jung, J.E.;Lee, S.-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.

A Monitor Unit Verification Calculation in IMRT as a Dosimetry QA

  • Kung, J.H.;Chen, G.T.Y.;Kuchnir, F.T.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.68-73
    • /
    • 2002
  • In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)$\_$ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.

  • PDF