• 제목/요약/키워드: algorithm

검색결과 62,996건 처리시간 0.085초

다목적 최적화 기법을 이용한 편심가새골조의 역량설계 (Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique)

  • 홍윤수;유은종
    • 한국전산구조공학회논문집
    • /
    • 제33권6호
    • /
    • pp.419-426
    • /
    • 2020
  • 본 연구에서는 철골편심가새골조 시스템을 대상으로 다목적최적화기법을 통해 설계를 수행하고 그 결과를 분석하였다. 최적화 설계를 위해 유전 알고리즘의 일종인 NSGA-II를 활용하였다. 여기서, 목적함수는 이율배반적 관계를 갖는 구조물량과 층간변위로 하여 최소화되고, 제약조건에는 구조기준에서 요구하는 내력비, 링크의 회전각 등을 포함하였다. 제약조건은 최적화 알고리즘 내에서 각 항목을 위반할수록 목적함수 값을 크게 증가시키는 벌금함수의 형태를 가지고 있다. 설계기준에서 EBF 시스템의 설계규정은 링크 부재만 항복이 허용되며 나머지 부재는 링크 항복 시 발생되는 부재력을 탄성상태에서 견디도록 의도한 역량설계법에 기초한다. 그러나 최적화를 통해 도출된 결과 중 일부는 구조기준의 설계조항은 만족하지만 특정층 링크에 소성변형이 집중되어 연약층을 형성함으로써 기준에서 의도하는 역량설계의 원칙을 위배하는 결과가 나타났다. 이를 해결하기 위해 모든 링크의 전단 초과강도계수 중 최대값이 최소값의 1.25배를 넘지 않도록 하는 제약식을 추가하였다. 새로운 제약식을 추가한 경우 모든 최적해는 설계기준과 역량설계의 원칙을 준수하는 것으로 나타났다. 모든 설계안에서 보 경간에 대한 링크의 길이비는 전단링크의 범주에 해당하는 10% ~ 14%였다. 전체적으로 설계안들은 링크의 초과강도 계수비가 가장 지배적인 제약으로 작용하였으며, 구조기준의 요구사항 중 층간변위와 내력비 등의 항목에서 허용치에 비해 매우 보수적으로 설계되었다.

시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리 (Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow)

  • 강지수;정경용;정호일
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-104
    • /
    • 2021
  • 본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.

산란점 수 추정방법에 따른 표적의 길이 추정 (Target Length Estimation of Target by Scattering Center Number Estimation Methods)

  • 이재인;유종원;김남문;정광용;서동욱
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.543-551
    • /
    • 2020
  • 본 논문에서는 레이더를 이용한 표적 길이 추정 정확도를 향상시키기 위한 방법에 관해 소개한다. 레이더 수신신호를 통해 만들어지는 고해상도 거리측면도(HRRP: High Resolution Range Profile)은 표적의 1차원적인 산란 특성을 나타내며, HRRP에서의 피크(peak)는 전자기파를 강하게 산란시키는 산란점(scattering center)을 의미한다. 추출된 산란점을 이용하여 레이더 가시선 방향(RLOS: Radar Line of Sight)의 길이인 표적 종방향 거리(downrange) 길이를 추정하며, 표적과 레이더 가시선 방향이 이루는 각도를 통해 표적의 실제 길이를 추정한다. 길이 추정의 정확도를 향상시키기 위해, HRRP를 이용하는 방법보다 정확하게 산란점을 추출하기 위한 방법인 매개변수 추정방법(parametric estimation method)을 이용할 수 있다. 매개변수 추정방법은 산란점 개수가 결정된 후에 적용되며, 따라서 산란점 개수 추정의 정확도에 크게 영향을 받는다. 본 논문에서는 레이더를 통한 표적 길이 추정 정확도를 향상시키기 위해, 정보 이론적 판단 기준에 바탕을 둔 신호원 수 추정방법인 AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), GLE (Gerschgorin Likelihood Estimators)방법들을 이용하여 산란점 개수를 추정하였다. 매개변수 추정방법으로 ESPRIT기법을 이용하여, 간단한 표적 캐드 모델에 대한 길이 추정 시뮬레이션을 수행하였으며, GLE방법이 산란점 개수 추정과 표적 길이 추정에 우수한 성능을 보임을 확인하였다.

완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가 (Evaluating Accuracy of Algorithms Providing Subsurface Properties Using Full-Reference Image Quality Assessment)

  • 최승표;전형구;신성렬;정우근
    • 지구물리와물리탐사
    • /
    • 제24권1호
    • /
    • pp.6-19
    • /
    • 2021
  • 탄성파 탐사는 속도와 밀도 같은 지하 매질 물성 정보를 파악하고 지하 지층 구조를 영상화 할 수 있으며, 이를 위한 다양한 알고리즘 개발이 이루어지고 있다. 이러한 알고리즘의 성능 검증을 위해 다양한 기준 모델이 사용되며, 정확도의 경우 참 물성 데이터와의 평균 제곱근 오차(Root Mean Squre Error, RMSE)를 통해 정량적으로 평가할 수 있다. RMSE는 수치적으로 단순하다는 장점이 있지만 구조적인 품질과의 상관도가 높지 않다는 한계가 있다. 이러한 한계를 보완하기 위해 인간지각시스템을 반영한 FR-IQA (Full Reference Image Quality Assessment) 기법이 연구되고 있으며, 지하 물성 정보 데이터를 다룰 수 있는 FR-IQA 기법들을 선정하였다. 본 연구는 물성 정보 도출 알고리즘으로 완전 파형 역산을 선정하여 세 가지 기준 모델에서 수치예제 실험을 진행하였으며, 선정 된 FR-IQA 기법들을 이용하여 물성 정보 도출 알고리즘 정확성 평가를 수행하였다. 주요 구조 정확성 평가 시 암염모델 하부 구조의 경우 구조적으로 좋지 않음을 육안으로 확인할 수 있었으나 RMSE 값은 감소하며 결과의 부정확성을 표출하지 못하였다. 반면, 몇몇 FR-IQA의 경우 결과의 부정확성을 수치적으로 표출하는 것을 확인하였다.

랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화 (Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image)

  • 이승민;정종철
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.52-67
    • /
    • 2020
  • 최근 북극은 매년 영구 동토층이 녹아 눈으로 덮인 땅이 드러나고 있어 해당 지역 관리를 위한 공간정보가 필요하다. 한국의 국토지리정보원(NGII)은 극지방의 공간정보를 구축하여 극지공간정보 서비스를 제공하고 있으나, 식생 정보는 제공되지 않고 있으므로 식생 공간정보 구축을 위한 추가적인 연구가 필요하다. 본 연구에서는 북극 스발바르제도의 뉘올레순 지역에 대한 식생 분류를 수행하기 위해 다중 시기의 Sentinel-2 영상을 사용하였다. 전처리 단계에서는 다중 시기 Sentinel-2 영상으로부터 10개 밴드와 6가지 정규 지수식을 생성하였다. 영상 분류는 8개 속성에 대한 토지피복분류를 통해 전체 식생 영역을 추출하는 과정과 전체 식생 영역 내에서 다시 세분류를 수행하는 과정으로 이루어졌다. 영상 분류 알고리즘은 OOB(Out-Of-Bag)를 통해 정확도 평가 및 변수 중요도를 산정할 수 있는 랜덤포레스트를 사용하였다. 전체 정확도는 다시기 영상이 사용되었을 경우와 식생 지수가 추가되었을 경우의 이점을 확인하기 위해 사용된 영상 수에 따라 각각 정확도를 산정하였다. 단일시기의 Sentinel-2 영상은 전체 정확도가 77%였으나, 7개의 다중 시기 Sentinel-2 영상을 기반으로 학습하였을 때, 81%로 향상되었다. 또한, 식생 지수가 추가로 사용된 학습에서 전체 정확도가 약 83%로 향상되었다. 식생 분류 시 변수 중요도는 적색, 녹색, 단파적외선-1 밴드가 가장 높은 변수로 선정되었다. 본 연구는 극지방의 식생에 대한 분류를 수행할 시 입력특성을 최적화하는 기초 연구로 활용될 수 있을 것으로 판단된다.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.63-71
    • /
    • 2020
  • 본 논문에서는 최근 가장 신뢰도 높은 인공지능 탐지 알고리즘인 YOLOv3와 EfficientDet을 이용한 화재 탐지 기술과 문자, 웹, 앱, 이메일 등 4종류의 알림을 동시에 전송하는 알림서비스 그리고 화재 탐지와 알림서비스를 연동하는 AWS 시스템을 제안한다. 우리의 정확도 높은 화재 탐지 알고리즘은 두 종류인데, 로컬에서 작동하는 YOLOv3 기반의 화재탐지 모델은 2000개 이상의 화재 데이터를 이용해 데이터 증강을 통해 학습하였고, 클라우드에서 작동하는 EfficientDet은 사전학습모델(Pretrained Model)에서 추가로 학습(Transfer Learning)을 진행하였다. 4종류의 알림서비스는 AWS 서비스와 FCM 서비스를 이용해 구축하였는데, 웹, 앱, 메일의 경우 알림 전송 직후 알림이 수신되며, 기지국을 거치는 문자시스템의 경우 지연시간이 1초 이내로 충분히 빨랐다. 화재 영상의 화재 탐지 실험을 통해 우리의 화재 탐지 기술의 정확성을 입증하였으며, 화재 탐지 시간과 알림서비스 시간을 측정해 화재 발생 후 알림 전송까지의 시간도 확인해보았다. 본 논문의 AI 화재 탐지 및 알림서비스 시스템은 과거의 화재탐지 시스템들보다 더 정확하고 빨라서 화재사고 시 골든타임 확보에 큰 도움을 줄 것이라고 기대된다.

최적 염소 소독 모형의 개발 및 파라미터 연구 (Development of Optimal Chlorination Model and Parameter Studies)

  • 김준현;안수영;박민우
    • 환경영향평가
    • /
    • 제29권6호
    • /
    • pp.403-413
    • /
    • 2020
  • 최적의 염소 소독 전략을 구축하기 위해 8개의 연립 준선형 편미분방정식으로 구성된 수학적 모형이 제안되었다. 다차원 수치 프로그램을 개발하기 위해 상류 가중 유한요소법을 사용하였다. 프로그램은 세 가지 유형의 반응기에서 측정된 농도에 대해 검증되었다. 16개의 실험 결과에 대해 경계 조건 및 반응 속도를 보정하여 측정된 값을 재생시켰다. 모델링 결과로부터 8개의 반응 속도계수가 추정되었다. 반응 속도계수는 pH 및 온도로 표현되었다. 반응 속도계수를 추정하기 위해 수치 오차의 제곱의 합을 최소화하는 자동 최적 알고리즘의 프로그램을 개발하고 모형에 결합하였다. 최종 사용지에서 염소 및 오염물의 농도를 최소화하기 위해서는 정수장의 염소소독공정으로부터 최종 사용지까지의 수질 변화를 모형에 의해 예측하고 이를 기반으로 유입수 수질에 따라 염소소독공정을 운영하는 실시간 예측 제어 시스템이 필요하다. 본 모형을 이용하여 정수장에 이러한 시스템을 구축할 수 있을 것이다.

딥러닝 기반의 분할과 객체탐지를 활용한 도로균열 탐지시스템 개발 (A Development of Road Crack Detection System Using Deep Learning-based Segmentation and Object Detection)

  • 하종우;박경원;김민수
    • 한국전자거래학회지
    • /
    • 제26권1호
    • /
    • pp.93-106
    • /
    • 2021
  • 최근 도로균열 탐지에 대한 많은 연구에서 딥러닝 기반의 접근법을 활용하면서 과거 알고리즘 기반의 접근법을 활용한 연구들보다 높은 성능과 성과를 보이고 있다. 그러나 딥러닝 기반의 많은 연구가 여전히 균열의 유형을 분류하는 것에 집중되어 있다. 균열 유형의 분류는 현재 수작업에 의존하고 있는 균열탐지 프로세스를 획기적으로 개선해 줄 수 있다는 점에서 상당한 기대를 받고 있다. 그러나 실제 도로의 유지보수 작업에 있어서는 균열의 유형뿐만 아니라 균열의 심각도에 관한 판단이 필수적이지만, 아직까지 도로균열 탐지와 관련된 연구들이 균열의 심각도에 대한 자동화된 산출까지 진전되지 못하고 있다. 균열의 심각도를 산출하기 위해서는 균열의 유형과 이미지 속 균열의 부위가 함께 파악되어야 한다. 본 연구에서는 균열 유형과 균열 부위의 동시적 탐지를 효과적으로 자동화하기 위해 딥러닝 기반의 객체탐지 모델인 Mobilenet-SSD를 활용하는 방법을 다루고 있다. 균열탐지의 정확도를 개선하기 위해 U-Net을 활용해 입력 이미지를 자동 분할하고, 이를 객체탐지 기법과 결합하기 위한 여러 실험을 진행하여 그 결과를 정리하였다. 결과적으로 U-Net을 활용한 이미지 의 자동 마스킹을 통해 객체탐지의 성능을 mAP 값이 0.9315가 되도록 향상시킬 수 있었다. 본 연구의 결과를 참고하여 도로포장 관리시스템의 구현에 균열탐지 기능의 자동화가 더욱 진전될 수 있다고 기대된다.

계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계 (The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability)

  • 황락훈;나승권;최병상
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.56-69
    • /
    • 2021
  • 상용계통과 연계한 PV 시스템은 인버터의 특성과 더불어 소형, 고 역률, 낮은 고조파 출력, 고 신뢰성, 최대출력 운전, 저비용 등의 장점이 요구된다. 태양광발전시스템의 PV 에너지를 계통과 부하로 전달하기 위해 양방향의 PCS가 요구되어 진다. 본 논문에서는 태양광 발전의 ESS를 고려한 PCS를 제안하여 부하평준화를 통한 전력의 안정적인 공급을 확인하고자 한다. 이를 위해 일사량과 부하량에 따른 5단계의 동작 모드 알고리즘을 제안하고, 충/방전 제어를 위한 제어기를 설계 하였다. 양방향의 효율적인 에너지 전달을 위해 DC-link단에 양방향 컨버터 및 배터리를 연결하고, 연계형 인버터를 통해 DC-link 전압 및 인버터 출력전압을 제어하였다. 제안된 시스템의 타당성을 입증하기 위해 PSIM을 사용한 시뮬레이션을 수행하여 타당성과 안정성을 검토하였으며, 이를 확인하기 위해 3[kW] PCS를 제작하여 실험하였다. 실험결과를 통해 제안된 시스템에 요구되어지는 특성을 검증하였으며 기존 시스템에 비해 강인한 시스템을 구성하였다.

토픽모델링을 이용한 도시 분야 연구동향 분석 (An Analysis of the Research Trends for Urban Study using Topic Modeling)

  • 장선영;정승현
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.661-670
    • /
    • 2021
  • 연구동향은 시기별 연구주제에 대한 중요도 판단과 부족한 연구 분야를 파악하고 신규 분야를 발굴하는데 유용하게 활용될 수 있다. 본 연구에서는 인구집중과 도시화로 인해 다양한 문제가 발생하고 있는 도시공간을 대상으로 한 논문들을 대상으로 시기별 연구동향을 분석하였다. 이를 위해 2002년부터 2019년 사이에 게재된 한국학술지인용색인(KCI)에 등재된 논문의 초록을 대상으로 데이터마이닝 기법 중 하나인 토픽모델링 분석을 수행하였다. 토픽모델링은 전체 내용에서 일정한 패턴을 발견해낼 수 있는 알고리즘 기반의 텍스트마이닝 기법으로 방대한 문헌에서 주제를 찾아내고 군집하는데 용이하다. 본 연구에서는 키워드 빈도, 연도별 경향, 토픽 도출, 토픽별 군집, 토픽유형별 경향에 대한 분석을 실시하였다. 그 결과 먼저 도시재생 분야연구가 지속적으로 증가되고 있고 앞으로도 세부 주제가 확대될 수 있는 분야로 분석되었다. 그리고 도시재생 주제는 이제 정규 연구분야로 자리 잡고 있는 것으로 파악되었다. 반면, 개발/성장과 에너지/환경과 같은 주제는 정체기에 들어간 것으로 분석되었다. 본 연구는 국내 전체 도시분야 연구를 대상으로 데이터마이닝 기법인 토픽모델링을 이용하여 키워드 간 연관성과 경향을 함께 분석하였다는 데 의의가 있다.