• Title/Summary/Keyword: alginate sponge

Search Result 8, Processing Time 0.028 seconds

Preparation and Study of Bioactive Characteristics of Alginate Sponge Containing Quercetin-encapsulated Nanocapsules (쿼세틴 담지 나노캡슐을 함유한 알지네이트 스펀지의 제조 및 생리활성 특성)

  • Kim, Woo Jin;Xu, Shuwen;Noh, Hyun Soo;Lee, Hyun Ju;Jeon, Jae Woo;Ghim, Han Do
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.341-353
    • /
    • 2019
  • Quercetin is one of flavonoids widely distributed in the plants and well known to have antioxidants, antiinflammatory, antimicrobial properties. In this study, alginate sponge containing quercetin-encapsulated nanocapsules was prepared by miniemulsion polymerization, dyring/crosslinking method and their bioactive characteristics were investigated. Alginate sponge containing quercetin-encapsulated nanocapsules were evaluated using a field emission scanning electron microscope(FE-SEM), a high performance liquid chromatography, cell viability, DPPH radical scavenging activity and antibacterial activity. The study indicates that alginate sponge containing quercetin-encapsulated nanocapsules had significant antioxidant, antiinflammatory and antibacterial activities. This study suggested that alginate sponge containing quercetin-encapsulated nanocapsules can be a potential candidate for medical materials.

The Effect of Silk Fibroin-Alginic Acid Sponge Treatment as an Artificial Skin on Wound (인공피부용 실크 피브로인-알긴산 해면체의 창상치유 효과)

  • Oh, Min;Choe, Joon;Heo, Chan Yeong;Baik, Long Min;Kim, Young Soo;Choi, Young Woong
    • Archives of Plastic Surgery
    • /
    • v.33 no.4
    • /
    • pp.413-422
    • /
    • 2006
  • Purpose: This study was designed to compare the wound healing effect of silk fibroin, alginate and fibroin/ alginate blend sponge with clinically used Nu gauze in a rat skin defect model. Methods: Two full thickness excisions were made on the back of Sprague-Dawley rat. The excised wound was covered with either of the silk fibroin(SF), alginate (SA), or fibroin/alginate blend sponge(SF/SA). On the postoperative days of 3, 7, 10 and 14, the wound area was calculated by image analysis software. At the same time, a skin wound tissue was biopsied. Results: Healing time 50% ($HT_{50}$) of SF/SA sponge treated group was dramatically reduced as compared with that of control treatment. We also found that the $HT_{50}$ of SF/SA sponge was significantly decreased as compared with either those of SF or SA treatment. Furthermore, SF/SA treatment significantly increased the size of epithelialization and collagen deposition as well as the number of PCNA positive cells on epidermal basement membrane as comapred with those of control treatment. Conclusion: Our results suggest that the wound healing effect of SF/SA blend sponge is the best among other treatments including SF and SA during the whole wound healing period.

Tissue Engineered Catilage Reconstruction with Alginate Sponge Containing Demineralized Bone Particles (탈미네랄골분이 첨가된 알지네이트 스펀지에서 조직공학적 연골 재건)

  • Kim, Hye Min;Park, Jin Young;Kim, Eun Young;Song, Jeong Eun;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.278-285
    • /
    • 2014
  • Demineralized bone particles (DBP) and alginate hybrid sponges were fabricated at 10, 20, 40 and 80% DBP/alginate hybrid ratios for seeding chondrocyte. Cell proliferation was measured via MTT assay. Morphological observation, histology, biological assay and RT-PCR were performed at each time point 1, 2 and 3 weeks. The cell viability was better in 20% DBP/alginate sponges than in other sponges. SEM results showed that more attached and more proliferated cells in the 20% DBP/alginate sponges with the lapse of time. Finally, histochemical assay results showed that the phenotype of chondrocyte was well maintained and both acidic mucopolysaccharide and type II collagen was well formed at 20% sponges. This study suggested that DBP/alginate sponge may serve as a potential cell delivery vehicle and a structural basis for tissue engineered articular cartilage.

Change in Physicochemical and Storage Characteristics of Jeungpyun by Addition of Pectin and Alginate powder (펙틴, 알긴산가루를 첨가한 증편의 이화학적 특성과 저장 중 변화)

  • Park, Mie-Ja
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.782-793
    • /
    • 2005
  • This study investigated the effect of $2\%$ addition of pectin and alginate on the Physicochemical and retrogradation Properties of Jeungpyun, a Korean traditional fermented rice cake. The volume of batters with alginate and Pectin was significantly larger than that of control. Jeungpyun samples with Pectin and alginate had a larger volume with uniform and smaller cell size. All samples showed largest foaming capability after second fermentation. Foaming capability of the control ($0\%$ addition of pectin and alginate) was significantly larger than that of the treated samples. The amount of reducing sugar tended to increase during fermentation but decreased after steaming, which was due to the increase in hydrolysis of starch. On the contrary, the content of free sugar was slightly decreased during fermentation but slightly increased after steaming. The control contained the largest amount of free sugar after steaming. The microstructure of starch particles after fermentation showed completely dispersed starch granules with air bubbles. After steaming, the structure was sponge-like in all samples. Samples with added alginate and pectin had significantly higher water binding capacity than those of the control. All samples showed noticeably increased solubility and swelling power at $70^{circ}C$ with the control being significantly lower than the treated samples. Retrogradation was measured with $\alpha$-amylase and the retrogradation process of the sample with added alginate and pectin proceeded slower than that of the control. The relative crystallinity was observed through X-ray diffraction method and samples with added alginate and pectin had smaller crystallinity and delayed retrogradation compared to the control. Thus, Jeungpyun with the addition of alginate and Pectin demonstrated improved functionality and dietary fiber addition effect. The storage period of was extended as the retrogradation rate was delayed by the addition of dietary fibers.

Synthesis and Properties of Superabsorbents from Sodium Alginate-g-PAN (PAN 그라프트 공중합 알긴산 나트륨계 고흡수성 수지의 합성과 성질)

  • 김정수;이영희;김한도
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.33-36
    • /
    • 2001
  • 고흡수성 고분자는 이온성기를 가진 수용성 고분자에 부분적인 가교결합을 도입하여 일반적으로 카르복실기 이온 (-COO-)등과 같은 친수성기를 다량으로 지닌 3차원 망상구조를 지니는 수용성 고분자이다[1]. 여지껏 물을 흡수하는 목적으로 사용된 흡수소재는 면, pulp, sponge 등이 일반적으로 알려져 있다. 이들은 모세관 현상에 의해 물을 흡수하는 것으로 알려져 있으며, 이들 흡수 재료의 흡수능력은 자기 무게의 수백 배로부터 천 배까지의 물도 흡수하며 외압하에서도 잘 탈수되지 않는 고기능성 고분자이며 그 원리는 다음과 같다. (중략)

  • PDF

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF

Development of Optimal Bio-encapsulated Media for Organic/Inorganic Odor Reduction (유.무기성 악취저감을 위한 최적의 미생물 포괄고정담체 제조법에 관한 연구)

  • Kim, Sun-jin;Kim, Tae-Hyeong;Lee, Yun-Hee;Jang, Hyun-Sup;Song, Ji-Hyeon;Hwan, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • A bio-encapsuled media was developed to apply on reducing odors produced from organic waste treatment process. The microorganism, candida tropicalis, was encapsulated in sponge media consisted of polyurethane material. Sodium alginate as a natural polymer which does not affect to hydrophilic microbes and PEGDA(poly ethylene glycol diacrylate) as a artificial polymer were used for the encapsuled media. The media was evaluated with TMEDA (N,N,N',N'-tetramethylethylenediamine, 0.02~0.1%) as a catalyst at different temperature 25 and $35^{\circ}C$. The best performance was achieved with 0.02% of TMEDA at $25^{\circ}C$. The microbes' activity in the media was examined by Live/Dead cell method.