• Title/Summary/Keyword: alfuzosin-HCl

Search Result 3, Processing Time 0.019 seconds

Formulation and Preparation of Sustained Release Pellet for Alfuzosin HCI Using Fluid-bed coater (유동층 코팅기를 이용한 염산알푸조신의 서방형 과립 설계 및 제조)

  • Na, Jin-Sang;Yoon, Yang-No;Seo, Hui;Jeong, Sang-Young;Park, Eun-Seok;Hwan, Sung-Joo;Shin, Byung-Cheol;Kim, Sung-Hoon;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • Alfuzosin, an Alphal-adrenoceptor antagonist is used for the treatment of patients with voiding and in a lesser extent storage lower urinary tract symptoms (LUTS) associated to benign prostatic hyperplasia (BPH). The objective of this study was to formulate sustained release alfuzosin HCl granules and assess their formulation variables. The $Eudragit^{(R)}$ as a polymer, sustained release membrane, and dibutyl sebacate (DBS) as a plasticizer were used. Multi-coated alfuzosin HCl delivery systems composed of sugar sphere, various excipients, $Eudragit^{(R)}$ and HPMC (hydroxy propyl methyl cellulose), Cellulose Acetate were prepared by fluid-bed coater. Membrane layer were used $Eudragit^{(R)}$ RS PO and NE 30D. And the alfuzosin HCl coated beads were coated immediate release drug layer for initial burst. Its dissolution test was carried out compared to conventional products ($XATRAL^{(R)}$ XL). The release rate of drug from coated beads was higher than that from $XATRAL^{(R)}$ XL in pH 6.8.

Effect of the Viscosity of (Hydroxypropyl)methyl Cellulose on Dissolution Rate of Alfuzosin-HCl Granule Tablet (HPMC의 점도에 따른 염산 알푸조신 과립정제의 용출률 조절)

  • Kim, Won;Song, Byung-Joo;Kim, Dae-Sung;Kim, Su-Jin;Lee, Seon-Kyoung;Kim, Hye-Lin;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.269-273
    • /
    • 2010
  • The primary objective of this work is to find the optimal condition for the granule tablet formulation of alfuzosin-HCl that aims to achieve a sustained drug release. (Hydroxypropyl)methyl cellulose (HPMC) is one of the most widely used polymer as a drug formulation and therefore has been utilized in this study as an excipient. Alfuzosin-HCl granule tablet was developed using the various viscosities of HPMC and the effects of viscosity on drug release was investigated. Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were employed to investigate the chemical structure and crystallization of alfuzosin-HCl in the formulation. We prepared the granule tablet by a direct compression method and studied the release profile in the stimulated intestinal fluid (pH 6.8). As the viscosity of HPMC increased the release of alfuzosin-HCl decreased, demonstrating that controlled release of alfuzosin-HCl can be achieved by varying the viscosity of HPMC.

Zero-order Delivery of Alfuzosin Hydrochloride with Hydrophilic Polymers

  • Park, Jun-Bom;Hwang, Chang-Hwan;Noh, Hyung-Gon;Chae, Yu-Byeong;Song, Jun-Woo;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2010
  • Manufacturing a multi-layered tablet such as Xatral XL$^{(R)}$ is more complex and expensive than monolayered tablets, but mono-layered tablets may have less favorable release properties depending on the pharmacodynamics and pharmacokinetics of the active ingredient. We therefore sought to develop a monolayer tablet with a similar dissolution profile to the commercial alfuzosin sustained-release triple layered tablet (Xatral XL$^{(R)}$). We prepared four different mono-layered alfuzosin tablets with different concentrations of hydroxypropyl methycellulose and PVP K-90. Fomulation III with alfuzosion/mg-stearate/ HPMC/ PVP K-90 (10/5/110/95 mg/tab) has a similar dissolution rate to Xatral XL$^{(R)}$, with a similarity factor score of 81.4. However, the swelling and erosion rates of the two formulations were different, and NIR analysis showed differences in the mechanisms of drug release. Thus, although formulation III and Xatral XL$^{(R)}$ show similar dissolution rates, the mechanisms of drug release are different.