• 제목/요약/키워드: aldehyde dehydrogenase(ALDH)

검색결과 85건 처리시간 0.021초

Expression of Human Mitochondiral Aldehyde Dehydrogenase 2 in Mammalian Cells using Vaccinia Virus-T7 RNA Polymerase

  • Kang, Su-Min;Yoo, Seung-Ku;Lee, Ki-Hwan
    • Journal of Microbiology
    • /
    • 제37권1호
    • /
    • pp.41-44
    • /
    • 1999
  • Human mitochondrial aldehyde dehydrogenase 2 (ALDH2) is mainly responsible for oxidation of acetaldehyde generated during alcohol oxidation in vivo. A full-length cDNA of human liver ALDH2 was successfully expressed using a vaccinia virus-T7 RNA polymerase system. The expressed ALDH2 had an enzymatic activity as high as the native human liver ALDH2 enzyme.

  • PDF

알데히드 탈수소 효소 활성에 미치는 글루타치온의 영향 (Effect of Glutathione on Aldehyde Dehydrogenase Activity)

  • 이은실;문전옥
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 2001
  • It is known that alcoholics have significantly lower mitochondrial aldehyde dehydrogenase (ALDH)s'activity than do normal subjects or nonalcoholics with liver disease. However, there are only few reports that explain the reasons behind this reduction of ALDHs'activities. In this study, ALDH activity is inhibited by acetaldehyde, a substrate for ALDH However, the addition of glutathione (GSH) protected ALDH activities against the inhibitory effects of acetaldehyde in vitro. Furthermore, when GSH depletion is induced using diethyl maleate (DEM) in rats by 24% in cytosol and 43% in mitochondria, ALDH activities were also depressed by 31% and 63%, respectively compared to non-treated rats without significant reductions in other hepatic enzymes. These results suggest that ALDHs'activities are closely related to the concentration of acetaldehyde and/or cellular GSH contents . Therefore in alcoholic liver disease, increased productions of acetaldehyde and decreased contents of mitochondrial GSH may involved in the depression of ALDHs'activities.

  • PDF

랫드에서 Aldehyde Dehydrogenase Related Compounds의 알콜 및 알데히드 분해 효능평가 (Anti-Alcohol and Anti-Aldehyde Hangover Effect of Aldehyde Dehydrogenase Related Compounds in Rat)

  • 신혜정;정세영;강소라;권흥택;김배환
    • 한국환경보건학회지
    • /
    • 제49권2호
    • /
    • pp.99-107
    • /
    • 2023
  • Background: Excessive alcohol consumption is at the root of serious social problems such as hangovers, liver dysfunction, and alcoholism. Objectives: This study was carried out to determine the hangover ameliorating effect of fermented rice extract and a combination of yeast-fermented powder and lysate containing aldehyde dehydrogenase (ALDH) (improved new ingredients) in an ethanol-induced rat study. Methods: The concentrations of alcohol, acetaldehyde, and malondialdehye in serum were evaluated to assess the anti-alcohol and anti-aldehyde hangover effect in two experiments, one with fermented rice extract) and a second with yeast-fermented powder and lysate, using animal studies. Results: Experiment 2 with yeast-fermented powder and lysate containing ALDH showed similar and higher activity, respectively, in reducing ethanol and acetaldehyde concentration compared with Experiment 1 with fermented rice extract. Experiment 2 also significantly reduced malondialdehyde, a type of lipid peroxide. The ALDH-related compound (ARC) lysate showed better hangover relief effect than ARC powder. Conclusions: These results indicate that ALDH-related compounds exhibit a hangover relief effect, and fermented lysate is considered to be a better candidate for hangover relief.

약용식물 추출물의 에탄올대사 효소활성에 미치는 영향 (Effect of Medicinal Plant Extracts on the Ethanol-Metabolizing Enzyme Activities)

  • 도재호;곽정원;이선정;노정진;이광승;김동청
    • 산업식품공학
    • /
    • 제21권3호
    • /
    • pp.286-291
    • /
    • 2017
  • 약용식물의 열수 추출물이 in vitro에서 alcohol dehydrogenase (ADH)와 aldehyde dehydrogenase (ALDH)의 활성에 미치는 영향을 확인하였다. 약용식물에 20배의 증류수를 넣고 $80^{\circ}C$에서 8시간 추출하여 얻어진 추출액을 시료로 사용하였다. 50종의 약용식물 중에서 마늘과 육계 추출물이 숙취해소 천연소재로서의 활용 가능성이 가장 높게 나타났다. 마늘 추출물은 ADH에 비해 ALDH의 활성을 2배 이상 촉진시킴으로써 acetaldehyde의 분해가 잘 되게 하였다. 육계 추출물은 ALDH의 활성에 비해 ADH의 활성을 획기적으로 저해함으로써 acetaldehyde의 생성을 크게 억제하였다. 육계 추출물은 농도에 비례하여 ADH와 ALDH의 활성을 저해하였으며, $45.33{\mu}g/mL$의 농도에서 ADH의 활성을 52.8% 저해하였고 ALDH의 활성을 11.0% 저해하였다.

인삼사포인 성분이 에탄올을 투여한 쥐의 뇌 Aldehyde Dehydrogenase 활성에 미치는 영향 (The Effect of Saponins of Panax ginseng C.A. Meyer on Brain Aldehyde Dehydrogenase Activity of Ethanol Administered Rat)

  • 이영돈;주충노
    • Journal of Ginseng Research
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 1994
  • Sprague-Dawley rats were given freely with 15% ethanol (control) and 15% ethanol containing (1) 0.1% ginseng saponin, (2) 0.02% ginsenoside $Rb_1$, and (3) $Rg_1$ (tests) instead of water for 7 days and aldehyde dehydrogenase (ALDH) and monoamine oxidase (MAO) activity in different regions of brain were examined. In control group, total ALDH activity with indoleacetaldehyde and acetaldehyde as substrate in all different regions was lower than that of normal group except in the hippocampus. The inhibitory effect on the activity was prominent in the corpus striatum and was not in the hippocampus. However, low-$K_m$ ALDH activity in all different regions was much lower than that of normal group. A considerable decrease in mitochondria ALDH activity in cerebellum and striatum was also observed in control group. In test groups total, low-$K_m$, and mitochondria AkDH activities in all different regions were higher than those in control group. Although ALDH activity in the striatum of test group was higher than control group, it was relatively depressed as compared with normal. There was not found a remarkable difference in extent of stimulating effect on the AkDH activity according to the ginseng saponin components. When biogenic aldehydes were used as substrate, ALDH activity with 3,4-dihydroxy-phenylacetaldehyde (DOPAL) in all brain regions of control group was lower than that using 5-hydroxy-indoleacetaldehyde (HIAL) and 3,4-dihydroxyphenylglycolaldehyde (NORAL) as substrate. In control group, ALDH activity with biogenic aldehydes above mentioned was markedly inhibited in the striatum contrary to other regions. The higher ALDH activity with biogenic aldehydes in test group than in control was found in the striatum, cerebrum, and cerebellum. MAO activity in the cerebellum was inhibited in control group and slightly increased in test group. The results of present study suggest that the corpus striatum is significantly affected by ethanol exposure while the hippocampus is not and that ginseng saponin fraction and ginsenosid es might have a preventive effect against depression of brain ALDH activity by chronic administration of ethanol.

  • PDF

Trichloroethylene 처리한 흰쥐의 간 미크로좀 Alcohol dehydrogenase와 Aldehyde dehydrogenase 활성도에 관한 연구 (Studies on Hepatic Microsomal Alcohol Dehydrogenase(ADH) and Aldehyde Dehydrogenase(ALDH) Activities in Rats Treated with Trichloroethylene)

  • 김기웅;강선규;양정선;박인정;문영한
    • 한국산업보건학회지
    • /
    • 제4권2호
    • /
    • pp.148-156
    • /
    • 1994
  • Chloral hydrate(CH), an intermediate metabolite of trichloroethylene(TRI) is reduced to trichloroethanol(TCE-OH), and is oxidized to trichloroacetic acid(TCA) by the nicotinamide adenine dinucleotide(NAD)-dependent enzymes such as alcohol dehydrogenase(ADH) and aldehyde dehydrogenase(ALDH) in liver. This study was performed to find out the change of activity of ADH and ALDH with increasing amount of TRI. Intraperitoneal injection of TRI were done to the male Sprague Dawely rats(mean body weight, $170{\pm}10g$) in com oil at the dosage of 150, 300, 600 mg/kg for 2 days. The results of experiments are following : 1. The contents of xenobiotic metabolic enzymes in liver are tended to be decreased with increasing amount of, but not significantlly (p>0.05). 2. Activity of ADH in microsome is decreased(p<0.05), and activity of ALDH is increased with amount of TRI(P<0.05). 3. Total trichloro-compounds(TTC) concentration in urine are increased with amount of TRI, but the ratio of between the TCE-OH and the TCA were not shown any critical change. These results suggests that the ALDH in microsome may be related to metabolism of TRI, but ADH was nothing less than the effected to metabolism of TRI.

  • PDF

인삼사포닌 분획이 에탄올을 투여한 쥐의 뇌에서 분리한 신경세포와 Astrocyte의 Aldehyde Dehydrogenase 활성에 미치는 영향 (The Effect oi Saponin Fraction of Panax Ginsen C.A. Meyer on Aldehyde Dehydrogenase Activity in Neurons and Astrocytes Isolated from Ethanol Administered Rat Brain)

  • 이명돈;황우섭;서해영
    • Journal of Ginseng Research
    • /
    • 제21권1호
    • /
    • pp.53-60
    • /
    • 1997
  • The changes in aldehyde dehydrogenase(ALDH, E.C. 1.2.1.3.) activity in neurons and astrocytes isolated from rat brains were investigated after administration of ethanol and Korean red ginseng(Panax ginseng C.A. Meyer) saponln. The cerebral ALDH activity with acetaldehyde and Propionaldehyde was higher in the white matter than in the gray matter. However, using indole-3-a-cetaldehyde and 3,4-dihydroxyphenylacetaldehyde as substrates, there was no significant difference in activity between two regions in cerebrum. In ethanol treated group, ALDH activity with all the substrates in the gray and white matter was lower than in normal group. In ethanol-saponin treated group, the enzyme activity in the white matter remarkably Increased. The ALDH activity in neurons isolated from cerebral cortex in ethanol-treated group was lower than in normal group. In ethanol-saponin treated group, neuronal ALDH activity with propionaldehyde was significantly recovered but not with Indole-3-acetaldehyde. In astrocytes, although the ALDH activity with propionaldehyde in the ethanol-treated group was not changed as compared with normal group, considerable increase in activity was found in ethanol-saponin treated group. These results suggest that Korean red ginseng saponin may protect the neuronal functions from the toxic effects of acetaldehyde derived from ethanol by stimulation of ALDH activity in astrocytes surrounding nerve cells.

  • PDF

Purification of Mitochondrial Matrix Aldehyde Dehydrogenase from Pig Brain

  • Kim, Kyu-Tae;Lee, Young-Don
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.177-183
    • /
    • 1995
  • The activity of aldehyde dehydrogenase (ALDH) in the cerebrum, cerebellum, striatum, and medulla oblongata was examined and mitochondrial matrix ALDH was purified prior to immunohistochemical study on the localization of ALDH isozymes in pig brain. Relatively high enzyme activity was found in the striatum and medulla oblongata when using indole-3-acetaldehyde as substrate, and in the striatum when using 3,4-dihydroxyphenylacetaldehyde (DOPAL). The main part of mitochondrial ALDH activities with both acetaldehyde and DOPAL existed in the matrix fraction. The ratio of activity of the matrix to the membrane fraction in the cerebrum was higher than in the cerebellum, suggesting that the distribution pattern of ALDH isozymes was different according to the brain regions. The 276-fold purified mitochondrial matrix ALDH from pig brain was identified to be homologous tetramers with 53 KD subunits. The enzyme showed maximal activity at pH 9.0 and was stable in the temperature range from $25^{\circ}C$ to $37^{\circ}C$. The mitochondrial matrix ALDH activity was considerably inhibited by acetaldehyde in vitro. The $K_m$ values of the enzyme for acetaldehyde and propionaldehyde were 5.8 mM and 4.9 mM, respectively, whereas $K_m$ values for indole-3-acetaldehyde and DOPAL were 44 ${\mu}M$ and 1.6 ${\mu}M$, respectively. The $V_{max}/K_{m}$ ratio was the highest with DOPAL as compared with other substrates. These results suggested that mitochondrial matrix ALDH in the present work might be a low Km isozyme involved in biogenic aldehyde oxidation in pig brain.

  • PDF

Ethanol이 Allyl alcohol 독성에 미치는 영향 (Effect of Ethanol on Allyl alcohol-Induced Toxicity)

  • 이주영;김대병;문창규;정진호
    • 약학회지
    • /
    • 제38권2호
    • /
    • pp.107-113
    • /
    • 1994
  • Ally alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase(ADH), subsequently to acrylic acid by aldehyde dehydrogenase(ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have studied the interaction between allyl alcohol and ethanol on liver toxicity. Simultaneous treatment of 2 g/kg ethanol by ip administration with 40 mg/kg allyl alcohol to rats increased the lethality significantly, accompanied by potentiation of the loss of hepatic glutathione. Collectively, these findings suggested that ethanol potentiated the hepatotoxicity and lethality induced by allyl alcohol probably through competing two metabolizing enzymes, ADH and ALDH.

  • PDF